aboutsummaryrefslogtreecommitdiff
path: root/pkg/images/tv/imexamine/iejimexam.x
blob: 46a4c910238a405aa2b1d9ff0e93d2674ba541a2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.

include	<error.h>
include	<imhdr.h>
include	<gset.h>
include	<mach.h>
include	"imexam.h"


# IE_JIMEXAM -- 1D profile plot and gaussian fit parameters.
# If no GIO pointer is given then only the fit parameters are printed.
# The fitting uses a Levenberg-Marquardt nonlinear chi square minimization.

procedure ie_jimexam (gp, mode, ie, x, y, axis)

pointer	gp
pointer	ie
int	mode
real	x, y
int	axis

int	navg, order, clgpseti()
bool	center, background, clgpsetb()
real	sigma, width, rplot, clgpsetr()

int	i, j, k, nx, ny, x1, x2, y1, y2, nfit, flag[5]
real	xc, yc, bkg, r, dr, fit[5], xfit, yfit, asumr(), amedr()
pointer	sp, title, avstr, im, pp, data, xs, ys, ptr
pointer	clopset(), ie_gimage(), ie_gdata()

errchk	ie_gdata, mr_solve

begin
	iferr (im = ie_gimage (ie, NO)) {
	    call erract (EA_WARN)
	    return
	}

	# Get parameters
	if (IE_PP(ie) != NULL)
	    call clcpset (IE_PP(ie))
	if (axis == 1)
	    IE_PP(ie) = clopset ("jimexam")
	else
	    IE_PP(ie) = clopset ("kimexam")
	pp = IE_PP(ie)
	navg = clgpseti (pp, "naverage")
	center = clgpsetb (pp, "center")
	background = clgpsetb (pp, "background")
	sigma = clgpsetr (pp, "sigma")
	rplot = clgpsetr (pp, "rplot")
	if (background) {
	    order = clgpsetr (pp, "xorder")
	    width = clgpsetr (pp, "width")
	}

	# If the initial center is INDEF then use the previous value.
	if (!IS_INDEF(x))
	    IE_X1(ie) = x
	if (!IS_INDEF(y))
	    IE_Y1(ie) = y

	if (axis == 1) {
	    xc = IE_X1(ie)
	    yc = IE_Y1(ie)
	} else {
	    xc = IE_Y1(ie)
	    yc = IE_X1(ie)
	}

	# Get data
	r = max (rplot, 8 * sigma + width)
	x1 = xc - r
	x2 = xc + r
	y1 = nint (yc) - (navg - 1) / 2
	y2 = nint (yc) + navg / 2
	iferr {
	    if (axis == 1)
		data = ie_gdata (im, x1, x2, y1, y2)
	    else
		data = ie_gdata (im, y1, y2, x1, x2)
	} then {
	    call erract (EA_WARN)
	    return
	}

	# Compute average vector
	nx = x2 - x1 + 1
	ny = y2 - y1 + 1
	yc = (y1 + y2) / 2.

	call smark (sp)
	call salloc (xs, nx, TY_REAL)
	call salloc (ys, nx, TY_REAL)
	call salloc (title, IE_SZTITLE, TY_CHAR)
	call salloc (avstr, SZ_LINE, TY_CHAR)

	ptr = data
	if (axis == 1) {
	    call sprintf (Memc[avstr], SZ_LINE, "Lines %d-%d")
		call pargi (y1)
		call pargi (y2)
	    call amovr (Memr[ptr], Memr[ys], nx) 
	    ptr = ptr + nx
	    do i = 2, ny {
		call aaddr (Memr[ptr], Memr[ys], Memr[ys], nx)
		ptr = ptr + nx
	    }
	    call adivkr (Memr[ys], real (ny), Memr[ys], nx)
	} else {
	    call sprintf (Memc[avstr], SZ_LINE, "Columns %d-%d")
		call pargi (y1)
		call pargi (y2)
	    do i = 0, nx-1 {
		Memr[ys+i] = asumr (Memr[ptr], ny) / ny
		ptr = ptr + ny
	    }
	}

	# Set default background
	bkg = 0.
	if (background) {
	    r = 4 * sigma
	    ptr = xs
	    do i = 0, nx-1 {
		if (abs (xc - x1 - i) > r) {
		    Memr[ptr] = Memr[ys+i]
		    ptr = ptr + 1
		}
	    }
	    if (ptr > xs)
		bkg = amedr (Memr[xs], ptr-xs)
	}

	# Convert to WCS
	if (axis == 1) {
	    call ie_mwctran (ie, xc, yc, xfit, yfit)
	    call ie_mwctran (ie, xc+sigma, yc, r, yfit)
	    dr = abs (xfit - r)
	    do i = 0, nx-1
		call ie_mwctran (ie, real(x1+i), yc, Memr[xs+i], yfit)
	} else {
	    call ie_mwctran (ie, yc, xc, yfit, xfit)
	    call ie_mwctran (ie, yc, xc+sigma, yfit, r)
	    dr = abs (xfit - r)
	    do i = 0, nx-1
		call ie_mwctran (ie, yc, real(x1+i), yfit, Memr[xs+i])
	}

	# Set initial fit parameters
	k = max (0, nint (xc - x1))
	fit[1] = bkg
	fit[2] = 0.
	fit[3] = Memr[ys+k] - fit[1]
	fit[4] = xfit
	fit[5] = dr

	# Do fitting.
	nfit = 1
	flag[1] = 3

	# Add centering if desired
	if (center) {
	    nfit = nfit + 1
	    flag[nfit] = 4
	    call ie_gfit (Memr[xs], Memr[ys], nx, fit, flag, nfit)
	}

	# Add sigma
	nfit = nfit + 1
	flag[nfit] = 5
	call ie_gfit (Memr[xs], Memr[ys], nx, fit, flag, nfit)

	# Now add background if desired
	if (background) {
	    if (order == 1) {
		nfit = nfit + 1
		flag[nfit] = 1
		call ie_gfit (Memr[xs], Memr[ys], nx, fit, flag, nfit)
	    } else if (order == 2) {
		nfit = nfit + 2
		flag[nfit-1] = 1
		flag[nfit] = 2
		call ie_gfit (Memr[xs], Memr[ys], nx, fit, flag, nfit)
	    }
	}

	# Plot the profile and overplot the gaussian fit.
	call sprintf (Memc[title], IE_SZTITLE, "%s: %s\n%s")
	    call pargstr (IE_IMNAME(ie))
	    call pargstr (Memc[avstr])
	    call pargstr (IM_TITLE(im))

	j = max (0, int (xc - x1 - rplot))
	k = min (nx-1, nint (xc - x1 + rplot))
	if (axis == 1)
	    call ie_graph (gp, mode, pp, Memc[title],
		Memr[xs+j], Memr[ys+j], k-j+1, IE_XLABEL(ie), IE_XFORMAT(ie))
	else
	    call ie_graph (gp, mode, pp, Memc[title],
		Memr[xs+j], Memr[ys+j], k-j+1, IE_YLABEL(ie), IE_YFORMAT(ie))

	call gseti (gp, G_PLTYPE, 2)
	xfit = min (Memr[xs+j], Memr[xs+k])
	r = (xfit - fit[4]) / fit[5]
	dr = abs ((Memr[xs+k] - Memr[xs+j]) / (k - j))
	if (abs (r) < 7.)
	    yfit = fit[1] + fit[2] * xfit + fit[3] * exp (-r**2 / 2.)
	else
	    yfit = fit[1] + fit[2] * xfit
	call gamove (gp, xfit, yfit)
	repeat {
	    xfit = xfit + 0.2 * dr
	    r = (xfit - fit[4]) / fit[5]
	    if (abs (r) < 7.)
		yfit = fit[1] + fit[2] * xfit + fit[3] * exp (-r**2 / 2.)
	    else
		yfit = fit[1] + fit[2] * xfit
	    call gadraw (gp, xfit, yfit)
	} until (xfit >= max (Memr[xs+j], Memr[xs+k]))
	call gseti (gp, G_PLTYPE, 1)

	# Print the fit values
	call printf ("%s: center=%7g peak=%7g sigma=%7.4g fwhm=%7.4g bkg=%7g\n")
	    call pargstr (Memc[avstr])
	    call pargr (fit[4])
	    call pargr (fit[3])
	    call pargr (fit[5])
	    call pargr (2.35482*fit[5])
	    call pargr (fit[1]+fit[2]*fit[4])

	if (IE_LOGFD(ie) != NULL) {
	    call fprintf (IE_LOGFD(ie),
		"%s: center=%7g peak=%7g sigma=%5.3f fwhm=%5.3f bkg=%7g\n")
		call pargstr (Memc[avstr])
		call pargr (fit[4])
		call pargr (fit[3])
		call pargr (fit[5])
		call pargr (2.35482*fit[5])
		call pargr (fit[1]+fit[2]*fit[4])
	}

	call sfree (sp)
end


# IE_GFIT -- 1D Gaussian fit.

procedure ie_gfit (xs, ys, nx, fit, flag, nfit)

real	xs[nx], ys[nx]		# Vector to be fit
int	nx			# Number of points
real	fit[5]			# Fit parameters
int	flag[nfit]		# Flag for parameters to be fit
int	nfit			# Number of parameters to be fit

int	i
real	chi1, chi2, mr

begin
	chi2 = MAX_REAL
	mr = -1.
	i = 0
	repeat {
	    call mr_solve (xs, ys, nx, fit, flag, 5, nfit, mr, chi1)
	    if (chi2 - chi1 > 1.)
		i = 0
	    else
		i = i + 1
	    chi2 = chi1
	} until (i == 3)
	mr = 0.
	call mr_solve (xs, ys, nx, fit, flag, 5, nfit, mr, chi1)

	fit[5] = abs (fit[5])
end


# DERIVS -- Compute model and derivatives for MR_SOLVE procedure.
#
#	I(x) = A1 + A2 * x + A3 exp {-[(x - A4) / A5]**2 / 2.}
#
# where the params are A1-A5.

procedure derivs (x, a, y, dyda, na)

real	x		# X value to be evaluated
real	a[na]		# Parameters
real	y		# Function value
real	dyda[na]	# Derivatives
int	na		# Number of parameters

real	arg, ex, fac

begin
	arg = (x - a[4]) / a[5]
	if (abs (arg) < 7.)
	    ex = exp (-arg**2 / 2.)
	else
	    ex = 0.
	fac = a[3] * ex * arg

	y = a[1] + a[2] * x + a[3] * ex

	dyda[1] = 1.
	dyda[2] = x
	dyda[3] = ex
	dyda[4] = fac / a[5]
	dyda[5] = fac * arg / a[5]
end


# MR_SOLVE -- Levenberg-Marquardt nonlinear chi square minimization.
#
# Use the Levenberg-Marquardt method to minimize the chi squared of a set
# of paraemters.  The parameters being fit are indexed by the flag array.
# To initialize the Marquardt parameter, MR, is less than zero.  After that
# the parameter is adjusted as needed.  To finish set the parameter to zero
# to free memory.  This procedure requires a subroutine, DERIVS, which
# takes the derivatives of the function being fit with respect to the
# parameters.  There is no limitation on the number of parameters or
# data points.  For a description of the method see NUMERICAL RECIPES
# by Press, Flannery, Teukolsky, and Vetterling, p523.

procedure mr_solve (x, y, npts, params, flags, np, nfit, mr, chisq)

real	x[npts]			# X data array
real	y[npts]			# Y data array
int	npts			# Number of data points
real	params[np]		# Parameter array
int	flags[np]		# Flag array indexing parameters to fit
int	np			# Number of parameters
int	nfit			# Number of parameters to fit
real	mr			# MR parameter
real	chisq			# Chi square of fit

int	i
real	chisq1
pointer	new, a1, a2, delta1, delta2

errchk	mr_invert

begin
	# Allocate memory and initialize.
	if (mr < 0.) {
	    call mfree (new, TY_REAL)
	    call mfree (a1, TY_REAL)
	    call mfree (a2, TY_REAL)
	    call mfree (delta1, TY_REAL)
	    call mfree (delta2, TY_REAL)

	    call malloc (new, np, TY_REAL)
	    call malloc (a1, nfit*nfit, TY_REAL)
	    call malloc (a2, nfit*nfit, TY_REAL)
	    call malloc (delta1, nfit, TY_REAL)
	    call malloc (delta2, nfit, TY_REAL)

	    call amovr (params, Memr[new], np)
	    call mr_eval (x, y, npts, Memr[new], flags, np, Memr[a2],
	        Memr[delta2], nfit, chisq)
	    mr = 0.001
	}

	# Restore last good fit and apply the Marquardt parameter.
	call amovr (Memr[a2], Memr[a1], nfit * nfit)
	call amovr (Memr[delta2], Memr[delta1], nfit)
	do i = 1, nfit
	    Memr[a1+(i-1)*(nfit+1)] = Memr[a2+(i-1)*(nfit+1)] * (1. + mr)

	# Matrix solution.
	call mr_invert (Memr[a1], Memr[delta1], nfit)

	# Compute the new values and curvature matrix.
	do i = 1, nfit
	    Memr[new+flags[i]-1] = params[flags[i]] + Memr[delta1+i-1]
	call mr_eval (x, y, npts, Memr[new], flags, np, Memr[a1],
	    Memr[delta1], nfit, chisq1)

	# Check if chisq has improved.
	if (chisq1 < chisq) {
	    mr = max (EPSILONR, 0.1 * mr)
	    chisq = chisq1
	    call amovr (Memr[a1], Memr[a2], nfit * nfit)
	    call amovr (Memr[delta1], Memr[delta2], nfit)
	    call amovr (Memr[new], params, np)
	} else
	    mr = 10. * mr

	if (mr == 0.) {
	    call mfree (new, TY_REAL)
	    call mfree (a1,  TY_REAL)
	    call mfree (a2,  TY_REAL)
	    call mfree (delta1, TY_REAL)
	    call mfree (delta2, TY_REAL)
	}
end


# MR_EVAL -- Evaluate curvature matrix.  This calls procedure DERIVS.

procedure mr_eval (x, y, npts, params, flags, np, a, delta, nfit, chisq)

real	x[npts]			# X data array
real	y[npts]			# Y data array
int	npts			# Number of data points
real	params[np]		# Parameter array
int	flags[np]		# Flag array indexing parameters to fit
int	np			# Number of parameters
real	a[nfit,nfit]		# Curvature matrix
real	delta[nfit]		# Delta array
int	nfit			# Number of parameters to fit
real	chisq			# Chi square of fit

int	i, j, k
real	ymod, dy, dydpj, dydpk
pointer	sp, dydp

begin
	call smark (sp)
	call salloc (dydp, np, TY_REAL)

	do j = 1, nfit {
	   do k = 1, j
	       a[j,k] = 0.
	    delta[j] = 0.
	}

	chisq = 0.
	do i = 1, npts {
	    call derivs (x[i], params, ymod, Memr[dydp], np)
	    dy = y[i] - ymod
	    do j = 1, nfit {
		dydpj = Memr[dydp+flags[j]-1]
		delta[j] = delta[j] + dy * dydpj
		do k = 1, j {
		    dydpk = Memr[dydp+flags[k]-1]
		    a[j,k] = a[j,k] + dydpj * dydpk
		}
	    }
	    chisq = chisq + dy * dy
	}

	do j = 2, nfit
	    do k = 1, j-1
		a[k,j] = a[j,k]

	call sfree (sp)
end
	    

# MR_INVERT -- Solve a set of linear equations using Householder transforms.

procedure mr_invert (a, b, n)

real	a[n,n]		# Input matrix and returned inverse
real	b[n]		# Input RHS vector and returned solution
int	n		# Dimension of input matrices

int	krank
real	rnorm
pointer	sp, h, g, ip

begin
	call smark (sp)
	call salloc (h, n, TY_REAL)
	call salloc (g, n, TY_REAL)
	call salloc (ip, n, TY_INT)

	call hfti (a, n, n, n, b, n, 1, 1E-10, krank, rnorm,
	    Memr[h], Memr[g], Memi[ip])

	call sfree (sp)
end