1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <error.h>
include <gset.h>
include <mach.h>
include <math.h>
include <imhdr.h>
include <imset.h>
include <math/iminterp.h>
include "imexam.h"
define BTYPES "|constant|nearest|reflect|wrap|project|"
define SZ_BTYPE 8 # Length of boundary type string
define NLINES 16 # Number of image lines in the buffer
# IE_VIMEXAM -- Plot the vector of image data between two pixels.
# There are two types of plot selected by the key argument. The
# second cursor position is passed in the IMEXAM data structure.
# The first position is either the middle of the vector or the starting
# point.
procedure ie_vimexam (gp, mode, ie, x, y, key)
pointer gp # GIO pointer
int mode # Graph mode
pointer ie # IMEXAM pointer
real x, y # Starting or center coordinate
int key # 'u' centered vector, 'v' two endpoint vector
int btype, nxvals, nyvals, nzvals, width
pointer sp, title, boundary, im, x_vec, y_vec, pp
real x1, y1, x2, y2, zmin, zmax, bconstant
bool fp_equalr()
int clgpseti(), clgwrd(), clopset()
real clgpsetr()
pointer ie_gimage()
errchk malloc
begin
iferr (im = ie_gimage (ie, NO)) {
call erract (EA_WARN)
return
}
call smark (sp)
call salloc (title, IE_SZTITLE, TY_CHAR)
call salloc (boundary, SZ_BTYPE, TY_CHAR)
# Get boundary extension parameters.
if (IE_PP(ie) != NULL)
call clcpset (IE_PP(ie))
IE_PP(ie) = clopset ("vimexam")
pp = IE_PP(ie)
btype = clgwrd ("vimexam.boundary", Memc[boundary], SZ_BTYPE, BTYPES)
bconstant = clgpsetr (pp, "constant")
nxvals = IM_LEN(im,1)
nyvals = IM_LEN(im,2)
if (!IS_INDEF (x))
IE_X1(ie) = x
if (!IS_INDEF(y))
IE_Y1(ie) = y
x1 = IE_X1(ie)
x2 = IE_X2(ie)
y1 = IE_Y1(ie)
y2 = IE_Y2(ie)
width = clgpseti (pp, "naverage")
# Check the boundary and compute the length of the output vector.
x1 = max (1.0, min (x1, real (nxvals)))
x2 = min (real(nxvals), max (1.0, x2))
y1 = max (1.0, min (y1, real (nyvals)))
y2 = min (real(nyvals), max (1.0, y2))
nzvals = int (sqrt ((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))) + 1
# Check for cases which should be handled by pcols or prows.
call malloc (x_vec, nzvals, TY_REAL)
call malloc (y_vec, nzvals, TY_REAL)
if (fp_equalr (x1, x2))
call ie_get_col (im, x1, y1, x2, y2, nzvals, width, btype,
bconstant, Memr[x_vec], Memr[y_vec], zmin, zmax)
else if (fp_equalr (y1, y2))
call ie_get_row (im, x1, y1, x2, y2, nzvals, width, btype,
bconstant, Memr[x_vec], Memr[y_vec], zmin, zmax)
else
call ie_get_vector (im, x1, y1, x2, y2, nzvals, width, btype,
bconstant, Memr[x_vec], Memr[y_vec], zmin, zmax)
# Convert endpoint plot coordinates to centered coordinates.
if (key == 'u') {
zmin = (IE_X1(ie) + IE_X2(ie)) / 2
zmax = (IE_Y1(ie) + IE_Y2(ie)) / 2
zmin = sqrt ((zmin-x1)**2 + (zmax-y1)**2)
call asubkr (Memr[x_vec], zmin, Memr[x_vec], nzvals)
}
call sprintf (Memc[title], IE_SZTITLE,
"%s: Vector %.1f,%.1f to %.1f,%.1f naverage: %d\n%s")
call pargstr (IE_IMNAME(ie))
call pargr (x1)
call pargr (y1)
call pargr (x2)
call pargr (y2)
call pargi (width)
call pargstr (IM_TITLE(im))
call ie_graph (gp, mode, pp, Memc[title], Memr[x_vec], Memr[y_vec],
nzvals, "", "")
# Finish up
call mfree (x_vec, TY_REAL)
call mfree (y_vec, TY_REAL)
call sfree (sp)
end
# IE_GET_VECTOR -- Average a strip perpendicular to a given vector and return
# vectors of point number and average pixel value. Also returned is the min
# and max value in the data vector.
procedure ie_get_vector (im, x1, y1, x2, y2, nvals, width, btype,
bconstant, x_vector, y_vector, zmin, zmax)
pointer im # pointer to image header
real x1, y1 # starting pixel of vector
real x2, y2 # ending pixel of pixel
real bconstant # Boundary extension constant
int btype # Boundary extension type
int nvals # number of samples along the vector
int width # width of strip to average over
real x_vector[ARB] # Pixel numbers
real y_vector[ARB] # Average pixel values (returned)
real zmin, zmax # min, max of data vector
double dx, dy, dpx, dpy, ratio, xoff, yoff, noff, xv, yv
int i, j, k, nedge, col1, col2, line1, line2
int colb, colc, line, linea, lineb, linec
pointer sp, oxs, oys, xs, ys, yvals, msi, buf
real sum , lim1, lim2, lim3, lim4
pointer imgs2r()
errchk msiinit
begin
call smark (sp)
call salloc (oxs, width, TY_REAL)
call salloc (oys, width, TY_REAL)
call salloc (xs, width, TY_REAL)
call salloc (ys, width, TY_REAL)
call salloc (yvals, width, TY_REAL)
# Determine sampling perpendicular to vector.
dx = (x2 - x1) / (nvals - 1)
dy = (y2 - y1) / (nvals - 1)
if (x1 < x2) {
dpx = -dy
dpy = dx
} else {
dpx = dy
dpy = -dx
}
# Compute offset from the nominal vector to the first sample point.
ratio = dx / dy
nedge = width + 1
noff = (real (width) - 1.0) / 2.0
xoff = noff * dpx
yoff = noff * dpy
# Initialize the interpolator and the image data buffer.
call msiinit (msi, II_BILINEAR)
buf = NULL
# Set the boundary.
col1 = int (min (x1, x2)) - nedge
col2 = nint (max (x1, x2)) + nedge
line1 = int (min (y1, y2)) - nedge
line2 = nint (max (y2, y1)) + nedge
call ie_setboundary (im, col1, col2, line1, line2, btype, bconstant)
# Initialize.
xv = x1 - xoff
yv = y1 - yoff
do j = 1, width {
Memr[oxs+j-1] = double (j - 1) * dpx
Memr[oys+j-1] = double (j - 1) * dpy
}
# Loop over the output image lines.
do i = 1, nvals {
x_vector[i] = real (i)
line = yv
# Get the input image data and fit an interpolator to the data.
# The input data is buffered in a section of size NLINES + 2 *
# NEDGE.
if (dy >= 0.0 && (buf == NULL || line > (linea))) {
linea = min (line2, line + NLINES - 1)
lineb = max (line1, line - nedge)
linec = min (line2, linea + nedge)
lim1 = xv
lim2 = lim1 + double (width - 1) * dpx
lim3 = xv + double (linea - line + 1) * ratio
lim4 = lim3 + double (width - 1) * dpx
colb = max (col1, int (min (lim1, lim2, lim3, lim4)) - 1)
colc = min (col2, nint (max (lim1, lim2, lim3, lim4)) + 1)
buf = imgs2r (im, colb, colc, lineb, linec)
call msifit (msi, Memr[buf], colc - colb + 1, linec - lineb +
1, colc - colb + 1)
} else if (dy < 0.0 && (buf == NULL || line < linea)) {
linea = max (line1, line - NLINES + 1)
lineb = max (line1, linea - nedge)
linec = min (line2, line + nedge)
lim1 = xv
lim2 = lim1 + double (width - 1) * dpx
lim3 = xv + double (linea - line - 1) * ratio
lim4 = lim3 + double (width - 1) * dpx
colb = max (col1, int (min (lim1, lim2, lim3, lim4)) - 1)
colc = min (col2, nint (max (lim1, lim2, lim3, lim4)) + 1)
buf = imgs2r (im, colb, colc, lineb, linec)
call msifit (msi, Memr[buf], colc - colb + 1, linec - lineb +
1, colc - colb + 1)
}
# Evaluate the interpolant.
call aaddkr (Memr[oxs], real (xv - colb + 1), Memr[xs], width)
call aaddkr (Memr[oys], real (yv - lineb + 1), Memr[ys], width)
call msivector (msi, Memr[xs], Memr[ys], Memr[yvals], width)
if (width == 1)
y_vector[i] = Memr[yvals]
else {
sum = 0.0
do k = 1, width
sum = sum + Memr[yvals+k-1]
y_vector[i] = sum / width
}
xv = xv + dx
yv = yv + dy
}
# Compute min and max values.
call alimr (y_vector, nvals, zmin, zmax)
# Free memory .
call msifree (msi)
call sfree (sp)
end
# IE_GET_COL -- Average a strip perpendicular to a column vector and return
# vectors of point number and average pixel value. Also returned is the min
# and max value in the data vector.
procedure ie_get_col (im, x1, y1, x2, y2, nvals, width, btype,
bconstant, x_vector, y_vector, zmin, zmax)
pointer im # pointer to image header
real x1, y1 # starting pixel of vector
real x2, y2 # ending pixel of pixel
int nvals # number of samples along the vector
int width # width of strip to average over
int btype # Boundary extension type
real bconstant # Boundary extension constant
real x_vector[ARB] # Pixel numbers
real y_vector[ARB] # Average pixel values (returned)
real zmin, zmax # min, max of data vector
real sum
int line, linea, lineb, linec
pointer sp, xs, ys, msi, yvals, buf
double dx, dy, xoff, noff, xv, yv
int i, j, k, nedge, col1, col2, line1, line2
pointer imgs2r()
errchk msiinit
begin
call smark (sp)
call salloc (xs, width, TY_REAL)
call salloc (ys, width, TY_REAL)
call salloc (yvals, width, TY_REAL)
# Initialize the interpolator and the image data buffer.
call msiinit (msi, II_BILINEAR)
buf = NULL
# Set the boundary.
nedge = max (2, width / 2 + 1)
col1 = int (x1) - nedge
col2 = nint (x1) + nedge
line1 = int (min (y1, y2)) - nedge
line2 = nint (max (y1, y2)) + nedge
call ie_setboundary (im, col1, col2, line1, line2, btype, bconstant)
# Determine sampling perpendicular to vector.
dx = 1.0d0
if (nvals == 1)
dy = 0.0d0
else
dy = (y2 - y1) / (nvals - 1)
# Compute offset from the nominal vector to the first sample point.
noff = (real (width) - 1.0) / 2.0
xoff = noff * dx
xv = x1 - xoff
do j = 1, width
Memr[xs+j-1] = xv + double (j - col1)
yv = y1
# Loop over the output image lines.
do i = 1, nvals {
x_vector[i] = real (i)
line = yv
# Get the input image data and fit an interpolator to the data.
# The input data is buffered in a section of size NLINES + 2 *
# NEDGE.
if (dy >= 0.0 && (buf == NULL || line > (linea))) {
linea = min (line2, line + NLINES - 1)
lineb = max (line1, line - nedge)
linec = min (line2, linea + nedge)
buf = imgs2r (im, col1, col2, lineb, linec)
call msifit (msi, Memr[buf], col2 - col1 + 1, linec - lineb +
1, col2 - col1 + 1)
} else if (dy < 0.0 && (buf == NULL || line < linea)) {
linea = max (line1, line - NLINES + 1)
lineb = max (line1, linea - nedge)
linec = min (line2, line + nedge)
buf = imgs2r (im, col1, col2, lineb, linec)
call msifit (msi, Memr[buf], col2 - col1 + 1, linec - lineb +
1, col2 - col1 + 1)
}
# Evaluate the interpolant.
call amovkr (real (yv - lineb + 1), Memr[ys], width)
call msivector (msi, Memr[xs], Memr[ys], Memr[yvals], width)
if (width == 1)
y_vector[i] = Memr[yvals]
else {
sum = 0.0
do k = 1, width
sum = sum + Memr[yvals+k-1]
y_vector[i] = sum / width
}
yv = yv + dy
}
# Compute min and max values.
call alimr (y_vector, nvals, zmin, zmax)
# Free memory .
call msifree (msi)
call sfree (sp)
end
# IE_GET_ROW -- Average a strip parallel to a row vector and return
# vectors of point number and average pixel value. Also returned is the min
# and max value in the data vector.
procedure ie_get_row (im, x1, y1, x2, y2, nvals, width, btype, bconstant,
x_vector, y_vector, zmin, zmax)
pointer im # pointer to image header
real x1, y1 # starting pixel of vector
real x2, y2 # ending pixel of pixel
int nvals # number of samples along the vector
int width # width of strip to average over
int btype # Boundary extension type
real bconstant # Boundary extension constant
real x_vector[ARB] # Pixel numbers
real y_vector[ARB] # Average pixel values (returned)
real zmin, zmax # min, max of data vector
double dx, dy, yoff, noff, xv, yv
int i, j, nedge, col1, col2, line1, line2
int line, linea, lineb, linec
pointer sp, oys, xs, ys, yvals, msi, buf
errchk imgs2r, msifit, msiinit
pointer imgs2r()
begin
call smark (sp)
call salloc (oys, width, TY_REAL)
call salloc (xs, nvals, TY_REAL)
call salloc (ys, nvals, TY_REAL)
call salloc (yvals, nvals, TY_REAL)
# Initialize the interpolator and the image data buffer.
call msiinit (msi, II_BILINEAR)
buf = NULL
# Set the boundary.
nedge = max (2, width / 2 + 1)
col1 = int (min (x1, x2)) - nedge
col2 = nint (max (x1, x2)) + nedge
line1 = int (y1) - nedge
line2 = nint (y1) + nedge
call ie_setboundary (im, col1, col2, line1, line2, btype, bconstant)
# Determine sampling perpendicular to vector.
if (nvals == 1)
dx = 0.0d0
else
dx = (x2 - x1) / (nvals - 1)
dy = 1.0
# Compute offset from the nominal vector to the first sample point.
noff = (real (width) - 1.0) / 2.0
xv = x1 - col1 + 1
do i = 1, nvals {
Memr[xs+i-1] = xv
xv = xv + dx
}
yoff = noff * dy
yv = y1 - yoff
do j = 1, width
Memr[oys+j-1] = yv + double (j - 1)
# Clear the accululator.
call aclrr (y_vector, nvals)
# Loop over the output image lines.
do i = 1, width {
line = yv
# Get the input image data and fit an interpolator to the data.
# The input data is buffered in a section of size NLINES + 2 *
# NEDGE.
if (dy >= 0.0 && (buf == NULL || line > (linea))) {
linea = min (line2, line + NLINES - 1)
lineb = max (line1, line - nedge)
linec = min (line2, linea + nedge)
buf = imgs2r (im, col1, col2, lineb, linec)
if (buf == NULL)
call error (0, "Error reading input image.")
call msifit (msi, Memr[buf], col2 - col1 + 1, linec - lineb +
1, col2 - col1 + 1)
} else if (dy < 0.0 && (buf == NULL || line < linea)) {
linea = max (line1, line - NLINES + 1)
lineb = max (line1, linea - nedge)
linec = min (line2, line + nedge)
buf = imgs2r (im, col1, col2, lineb, linec)
if (buf == NULL)
call error (0, "Error reading input image.")
call msifit (msi, Memr[buf], col2 - col1 + 1, linec - lineb +
1, col2 - col1 + 1)
}
# Evaluate the interpolant.
call amovkr (real (Memr[oys+i-1] - lineb + 1), Memr[ys], nvals)
call msivector (msi, Memr[xs], Memr[ys], Memr[yvals], nvals)
if (width == 1)
call amovr (Memr[yvals], y_vector, nvals)
else
call aaddr (Memr[yvals], y_vector, y_vector, nvals)
yv = yv + dy
}
# Compute the x and y vectors.
do i = 1, nvals
x_vector[i] = real (i)
if (width > 1)
call adivkr (y_vector, real (width), y_vector, nvals)
# Compute min and max values.
call alimr (y_vector, nvals, zmin, zmax)
# Free memory .
call msifree (msi)
call sfree (sp)
end
# IE_SETBOUNDARY -- Set boundary extension.
procedure ie_setboundary (im, col1, col2, line1, line2, btype, bconstant)
pointer im # IMIO pointer
int col1, col2 # Range of columns
int line1, line2 # Range of lines
int btype # Boundary extension type
real bconstant # Constant for constant boundary extension
int btypes[5]
int nbndrypix
data btypes /BT_CONSTANT, BT_NEAREST, BT_REFLECT, BT_WRAP, BT_PROJECT/
begin
nbndrypix = 0
nbndrypix = max (nbndrypix, 1 - col1)
nbndrypix = max (nbndrypix, col2 - IM_LEN(im, 1))
nbndrypix = max (nbndrypix, 1 - line1)
nbndrypix = max (nbndrypix, line2 - IM_LEN(im, 2))
call imseti (im, IM_TYBNDRY, btypes[btype])
call imseti (im, IM_NBNDRYPIX, nbndrypix + 1)
if (btypes[btype] == BT_CONSTANT)
call imsetr (im, IM_BNDRYPIXVAL, bconstant)
end
# IE_BUFL2R -- Maintain buffer of image lines. A new buffer is created when
# the buffer pointer is null or if the number of lines requested is changed.
# The minimum number of image reads is used.
procedure ie_bufl2r (im, col1, col2, line1, line2, buf)
pointer im # Image pointer
int col1 # First image column of buffer
int col2 # Last image column of buffer
int line1 # First image line of buffer
int line2 # Last image line of buffer
pointer buf # Buffer
pointer buf1, buf2
int i, ncols, nlines, nclast, llast1, llast2, nllast
errchk malloc, realloc, imgs2r
pointer imgs2r()
begin
ncols = col2 - col1 + 1
nlines = line2 - line1 + 1
# If the buffer pointer is undefined then allocate memory for the
# buffer. If the number of columns or lines requested changes
# reallocate the buffer. Initialize the last line values to force
# a full buffer image read.
if (buf == NULL) {
call malloc (buf, ncols * nlines, TY_REAL)
llast1 = line1 - nlines
llast2 = line2 - nlines
} else if ((nlines != nllast) || (ncols != nclast)) {
call realloc (buf, ncols * nlines, TY_REAL)
llast1 = line1 - nlines
llast2 = line2 - nlines
}
# Read only the image lines with are different from the last buffer.
if (line1 < llast1) {
do i = line2, line1, -1 {
if (i > llast1)
buf1 = buf + (i - llast1) * ncols
else
buf1 = imgs2r (im, col1, col2, i, i)
buf2 = buf + (i - line1) * ncols
call amovr (Memr[buf1], Memr[buf2], ncols)
}
} else if (line2 > llast2) {
do i = line1, line2 {
if (i < llast2)
buf1 = buf + (i - llast1) * ncols
else
buf1 = imgs2r (im, col1, col2, i, i)
buf2 = buf + (i - line1) * ncols
call amovr (Memr[buf1], Memr[buf2], ncols)
}
}
# Save the buffer parameters.
llast1 = line1
llast2 = line2
nclast = ncols
nllast = nlines
end
|