1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
include <imhdr.h>
include <error.h>
include <mach.h>
include <gset.h>
define EXTRA_HT 0.1
define SZ_TITLE 512
# T_RADPLT -- Generate a radial profile plot around a star center.
procedure t_radplt()
char ifile[SZ_FNAME]
int infile, nfiles
pointer im
int cboxsize, rboxsize
real xinit, yinit, xcntr, ycntr
int clpopni(), clplen(), clgfil()
int clgeti()
real clgetr()
pointer immap()
begin
# Get file names
infile = clpopni ("input")
nfiles = clplen (infile)
# Get x and y initial
xinit = clgetr ("x_init")
yinit = clgetr ("y_init")
# Get box size to use for centering
cboxsize = clgeti ("cboxsize")
# Get box size to use for radial plot
rboxsize = clgeti ("rboxsize")
# Loop over all images
while (clgfil (infile, ifile, SZ_FNAME) != EOF) {
iferr (im = immap (ifile, READ_ONLY, 0)) {
call eprintf ("[%s] not found\n")
call pargstr (ifile)
next
}
# Find star center
call mpc_cntr (im, xinit, yinit, cboxsize, xcntr, ycntr)
# Plot profile
call mpc_rplot (im, ifile, xcntr, ycntr, rboxsize)
call printf ("[%s] x:%7.2f y:%7.2f\n")
call pargstr (ifile)
call pargr (xcntr)
call pargr (ycntr)
call imunmap (im)
}
end
# MPC_CNTR -- Compute star center using MPC algorithm.
procedure mpc_cntr (im, xstart, ystart, boxsize, xcntr, ycntr)
pointer im
real xstart, ystart
int boxsize
real xcntr, ycntr
int x1, x2, y1, y2, half_box
int ncols, nrows, nx, ny, try
real xinit, yinit
pointer bufptr, sp, x_vect, y_vect
int imgs2r()
begin
half_box = (boxsize - 1) / 2
xinit = xstart
yinit = ystart
# Mark region to extract - use box size
ncols = IM_LEN (im, 1)
nrows = IM_LEN (im, 2)
try = 0
repeat {
x1 = amax1 (xinit - half_box, 1.0) +0.5
x2 = amin1 (xinit + half_box, real(ncols)) +0.5
y1 = amax1 (yinit - half_box, 1.0) +0.5
y2 = amin1 (yinit + half_box, real(nrows)) +0.5
nx = x2 - x1 + 1
ny = y2 - y1 + 1
# Extract region around center
bufptr = imgs2r (im, x1, x2, y1, y2)
# Collapse to two 1-D arrays
call smark (sp)
call salloc (x_vect, nx, TY_REAL)
call salloc (y_vect, ny, TY_REAL)
call aclrr (Memr[x_vect], nx)
call aclrr (Memr[y_vect], ny)
# Sum all rows
call mpc_rowsum (Memr[bufptr], Memr[x_vect], nx, ny)
# Sum all columns
call mpc_colsum (Memr[bufptr], Memr[y_vect], nx, ny)
# Find centers
call mpc_getcenter (Memr[x_vect], nx, xcntr)
call mpc_getcenter (Memr[y_vect], ny, ycntr)
# Add in offsets
xcntr = xcntr + x1
ycntr = ycntr + y1
call sfree (sp)
try = try + 1
if (try == 1) {
if ((abs(xcntr-xinit) > 1.0) || (abs(ycntr-yinit) > 1.0)) {
xinit = xcntr
yinit = ycntr
}
} else
break
}
end
# MPC_RPLOT -- Plot intensity as a function of radial distance.
procedure mpc_rplot (im, imname, xcntr, ycntr, rboxsize)
pointer im
char imname[ARB]
real xcntr, ycntr
int rboxsize
int x1, x2, y1, y2, half_box
pointer bufptr, title, sp, gp, op
int ncols, nrows, nx, ny, i, j
real xinit, yinit, radval, intval, ymin, ymax, xlen
int imgs2r(), strlen()
pointer gopen()
begin
call smark (sp)
call salloc (title, SZ_TITLE, TY_CHAR)
half_box = (rboxsize - 1) / 2
xinit = xcntr
yinit = ycntr
# Mark region to extract - use box size
ncols = IM_LEN(im,1)
nrows = IM_LEN(im,2)
x1 = amax1 (xinit - half_box, 1.0) +0.5
x2 = amin1 (xinit + half_box, real(ncols)) +0.5
y1 = amax1 (yinit - half_box, 1.0) +0.5
y2 = amin1 (yinit + half_box, real(nrows)) +0.5
nx = x2 - x1 + 1
ny = y2 - y1 + 1
# Extract region around center.
bufptr = imgs2r (im, x1, x2, y1, y2)
# Begin plotting.
gp = gopen ("stdgraph", NEW_FILE, STDGRAPH)
call mpc_aminmax (Memr[bufptr], nx, ny, ymin, ymax)
ymax = ymax + EXTRA_HT * (ymax-ymin)
ymin = ymin - EXTRA_HT * (ymax-ymin)
xlen = 1.5 * rboxsize / 2
call gswind (gp, 0.0, xlen, ymin, ymax)
call sysid (Memc[title], SZ_LINE)
op = title + strlen (Memc[title])
call sprintf (Memc[op], SZ_TITLE-SZ_LINE,
"\nRadial Plot of %s at [%0.2f,%0.2f]\n")
call pargstr (imname)
call pargr (xcntr)
call pargr (ycntr)
call glabax (gp, Memc[title], "Pixels", "Counts")
do i = 1, ny
do j = 1, nx {
call mpc_radius (Memr[bufptr], nx, ny, j, i, xcntr-x1+1,
ycntr-y1+1, radval, intval)
call gmark (gp, radval, intval, GM_PLUS, -.005*xlen,
-0.007*(ymax-ymin))
}
call gclose (gp)
call sfree (sp)
end
# AMINMAX -- Compute min and max of two-d array.
procedure mpc_aminmax (a, nx, ny, ymin, ymax)
int nx, ny
real a[nx,ny]
real ymin, ymax
int i, j
begin
ymin = a[1,1]
ymax = ymin
do i = 1, ny
do j = 1, nx {
ymin = amin1 (ymin, a[j,i])
ymax = amax1 (ymax, a[j,i])
}
end
# RADIUS -- Compute radius from center.
procedure mpc_radius (a, nx, ny, i, j, xc, yc, radval, intval)
real a[nx, ny]
int nx, ny, i, j
real xc, yc, dx, dy, radval, intval
begin
dx = xc - i
dy = yc - j
radval = sqrt (dx**2 + dy**2)
intval = a[i,j]
end
# ROWSUM -- Sum all rows in a raster
procedure mpc_rowsum (v, row, nx, ny)
int nx, ny
real v[nx,ny]
real row[ARB]
int i, j
begin
do i = 1, ny
do j = 1, nx
row[j] = row[j] + v[j,i]
end
# COLSUM -- Sum all columns in a raster.
procedure mpc_colsum (v, col, nx, ny)
int nx, ny
real v[nx,ny]
real col[ARB]
int i, j
begin
do i = 1, ny
do j = 1, nx
col[j] = col[j] + v[i,j]
end
# GETCENTER -- Compute center of gravity of array.
procedure mpc_getcenter (v, nv, vc)
real v[ARB]
int nv
real vc
int i
real sum1, sum2, sigma, cont
begin
# Assume continuum level is at endpoints
# Compute first moment
sum1 = 0.0
sum2 = 0.0
call aavgr (v, nv, cont, sigma)
do i = 1, nv
if (v[i] > cont) {
sum1 = sum1 + (i-1) * (v[i] - cont)
sum2 = sum2 + (v[i] - cont)
}
# Determine center
vc = sum1 / sum2
end
|