1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
|
include <gset.h>
include <math/iminterp.h>
define INTERP_TYPE II_SPLINE3 # Interpolation type
define STEP 0.01 # Approximate step size
define NITERATE 10 # Number of iteration to find endpoints
define DX 0.001 # Accuracy
# IMP_PROFILE -- IMPLOT profile analysis.
procedure imp_profile (gp, x, y, n, x1, y1, x2, y2, sl, sline)
pointer gp #I gio pointer
real x[n] #I x coordinates
real y[n] #I y coordinates
int n #I number of points
real x1, y1 #I first endpoint
real x2, y2 #I second endpoint
pointer sl #U status line pointer
int sline #U line to print
int i
real p, p1, p2, pc, pl, pr, step
real a, b, c, y0, dy, xc, xl, xr, der[2]
double sumb, sum0, sum1, sum2, sum3
pointer xasi, yasi, sl_getstr
real asieval()
bool fp_equalr()
begin
# Fit an interpolator to the input arrays.
call asiinit (xasi, INTERP_TYPE)
call asiinit (yasi, INTERP_TYPE)
call asifit (xasi, x, n)
call asifit (yasi, y, n)
# Find the pixel endpoints given the x endpoints to an accuracy of DX.
p1 = 1. + n / 2.
b = 1.
do i = 1, NITERATE {
call asider (xasi, p1, der, 2)
if (!fp_equalr (der[2], 0.))
b = der[2]
a = x1 - der[1]
p1 = max (1., min (real(n), p1 + a / der[2]))
if (abs (a) < DX)
break
}
p2 = p1
do i = 1, NITERATE {
call asider (xasi, p2, der, 2)
if (!fp_equalr (der[2], 0.))
b = der[2]
a = x2 - der[1]
p2 = max (1., min (real(n), p2 + a / der[2]))
if (abs (a) < DX)
break
}
# Set the linear baseline.
if (fp_equalr (p1, p2)) {
y0 = (y1 + y2) / 2.
dy = 1.
step = STEP
} else if (p1 < p2) {
y0 = y1
dy = (y2 - y0) / (p2 - p1)
step = (p2 - p1) / (nint(p2) - nint(p1) + 1) * STEP
} else {
pc = p1
p1 = p2
p2 = pc
y0 = y2
dy = (y1 - y0) / (p2 - p1)
step = (p2 - p1) / (nint(p2) - nint(p1) + 1) * STEP
}
# Compute the first 2 moments using trapezoidal integration.
p = p1
a = asieval (xasi, p)
b = y0 + (p - p1) * dy
c = asieval (yasi, p) - b
sumb = b / 2
sum0 = c / 2
sum1 = a * c / 2
for (p=p+step; p<=p2; p=p+step) {
a = asieval (xasi, p)
b = y0 + (p - p1) * dy
c = asieval (yasi, p) - b
sumb = sumb + b
sum0 = sum0 + c
sum1 = sum1 + a * c
}
sumb = (sumb - b / 2) * step
sum0 = (sum0 - c / 2) * step
sum1 = (sum1 - a * c / 2) * step
# Compute the higher central moments using trapezoidal integration.
if (sum0 == 0D0) {
sum1 = INDEFD
sum2 = INDEFD
sum3 = INDEFD
} else {
sum1 = sum1 / sum0
p = p1
a = asieval (xasi, p) - sum1
b = y0 + (p - p1) * dy
c = asieval (yasi, p) - b
sum2 = a * a * c / 2
sum3 = a * a * a * c / 2
for (p=p+step; p<=p2; p=p+step) {
a = asieval (xasi, p) - sum1
b = y0 + (p - p1) * dy
c = asieval (yasi, p) - b
sum2 = sum2 + a * a * c
sum3 = sum3 + a * a * a * c
}
sum2 = (sum2 - a * a * c / 2) * step
sum3 = (sum3 - a * a * a * c / 2) * step
sum2 = sqrt (sum2 / sum0)
if (sum2 > 0.)
sum3 = (sum3 / sum0) / (sum2 ** 3)
}
# Find the maximum value away from the baseline.
pc= p1
c = 0.
for (p=p1; p<=p2; p=p+step) {
a = abs (asieval (yasi, p) - y0 - (p - p1) * dy)
if (a > c) {
pc = p
c = a
}
}
xc = asieval (xasi, pc)
# Find the half width points.
c = c / 2
pl = INDEF
xl = INDEF
for (p=pc; p>=p1; p=p-step) {
a = abs (asieval (yasi, p) - y0 - (p - p1) * dy)
if (a < c) {
pl = p + (c - a) / (b - a) * step
xl = asieval (xasi, pl)
break
}
b = a
}
pr = INDEF
xr = INDEF
for (p=pc; p<p2; p=p+step) {
a = abs (asieval (yasi, p) - y0 - (p - p1) * dy)
if (a < c) {
pr = p - (c - a) / (b - a) * step
xr = asieval (xasi, pr)
break
}
b = a
}
b = y0 + (pc - p1) * dy
p = asieval (yasi, pc)
a = (p - b) / 2 + b
if (!IS_INDEF(xl)) {
if (xl > xc) {
c = pl
pl = pr
pr = c
c = xl
xl = xr
xr = c
}
}
if (IS_INDEF(xl) || IS_INDEF(xr))
c = INDEF
else
c = xr - xl
# Draw marks to show the baseline, center, and width.
call gseti (gp, G_PLTYPE, 2)
call gline (gp, x1, y1, x2, y2)
call gline (gp, xc, b, xc, p)
if (!IS_INDEF(xl))
call gline (gp, xc, a, xl, a-b+y0+(pl-p1)*dy)
if (!IS_INDEF(xr))
call gline (gp, xc, a, xr, a-b+y0+(pr-p1)*dy)
call gseti (gp, G_PLTYPE, 1)
# Record the results.
call sl_init (sl, 4)
call sprintf (Memc[sl_getstr(sl,1)], SZ_LINE,
"[1/4] Profile: Center=%8g, Width=%8g, Peak=%8g, Bkg=%8g\n")
call pargr (xc)
call pargr (c)
call pargr (p)
call pargr (b)
call sprintf (Memc[sl_getstr(sl,2)], SZ_LINE,
"[2/4] Moments: Centroid=%8g, Width=%8g, Flux=%8g, Asym=%6g\n")
call pargd (sum1)
call pargd (2.35482 * sum2)
call pargd (sum0)
call pargd (sum3)
call sprintf (Memc[sl_getstr(sl,3)], SZ_LINE,
"[3/4] Half Intensity: Lower=%8g, Upper=%8g, Width=%8g\n")
call pargr (xl)
call pargr (xr)
call pargr (c)
call sprintf (Memc[sl_getstr(sl,4)], SZ_LINE,
"[4/4] Background: (%8g, %8g) - (%8g, %8g)\n")
call pargr (x1)
call pargr (y1)
call pargr (x2)
call pargr (y2)
sline = 1
call asifree (xasi)
call asifree (yasi)
end
|