aboutsummaryrefslogtreecommitdiff
path: root/pkg/xtools/numrecipes.x
blob: ae437b6d1dbd12e97d9a633e8b4cf889b98f8e8c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.

include	<math.h>
include	<mach.h>

# GAMMLN -- Return natural log of gamma function.
# POIDEV -- Returns Poisson deviates for a given mean.
# GASDEV -- Return a normally distributed deviate of zero mean and unit var.
# MR_SOLVE -- Levenberg-Marquardt nonlinear chi square minimization.
#     MR_EVAL -- Evaluate curvature matrix.
#     MR_INVERT -- Solve a set of linear equations using Householder transforms.
# TWOFFT -- Returns the complex FFTs of two input real arrays.
# REALFT -- Calculates the FFT of a set of 2N real valued data points.
#     FOUR1 -- Computes the forward or inverse FFT of the input array.


# GAMMLN -- Return natural log of gamma function.
# Argument must greater than 0.  Full accuracy is obtained for values
# greater than 1.  For 0<xx<1, the reflection formula can be used first.
#
# Based on Numerical Recipes by Press, Flannery, Teukolsky, and Vetterling.
# Used by permission of the authors.
# Copyright(c) 1986 Numerical Recipes Software.

real procedure gammln (xx)

real	xx		# Value to be evaluated

int	j
double	cof[6], stp, x, tmp, ser
data	cof, stp / 76.18009173D0, -86.50532033D0, 24.01409822D0,
		-1.231739516D0,.120858003D-2,-.536382D-5,2.50662827465D0/

begin
	x = xx - 1.0D0
	tmp = x + 5.5D0
	tmp = (x + 0.5D0) * log (tmp) - tmp
	ser = 1.0D0
	do j = 1, 6 {
	    x = x + 1.0D0
	    ser = ser + cof[j] / x
	}
	return (tmp + log (stp * ser))
end


# POIDEV -- Returns Poisson deviates for a given mean.
# The real value returned is an integer.
#
# Based on Numerical Recipes by Press, Flannery, Teukolsky, and Vetterling.
# Used by permission of the authors.
# Copyright(c) 1986 Numerical Recipes Software.
#
# Modified to return zero for input values less than or equal to zero.

real procedure poidev (xm, seed)

real	xm		# Poisson mean
long	seed		# Random number seed

real	oldm, g, em, t, y, ymin, ymax, sq, alxm, gammln(), urand(), gasdev()
data	oldm /-1./

begin
	if (xm <= 0)
	    em = 0
	else if (xm < 12) {
	    if (xm != oldm) {
		oldm = xm
		g = exp (-xm)
	    }
	    em = 0
	    for (t = urand (seed); t > g; t = t * urand (seed))
		em = em + 1
	} else if (xm < 100) {
	    if (xm != oldm) {
		oldm = xm
		sq = sqrt (2. * xm)
		ymin = -xm / sq
		ymax = (1000 - xm) / sq
		alxm = log (xm)
		g = xm * alxm - gammln (xm+1.)
	    }
	    repeat {
		repeat {
	            y = tan (PI * urand(seed))
		} until (y >= ymin)
	        em = int (sq * min (y, ymax) + xm)
	        t = 0.9 * (1 + y**2) * exp (em * alxm - gammln (em+1) - g)
	    } until (urand(seed) <= t)
	} else
	    em = xm + sqrt (xm) * gasdev (seed)
	return (em)
end


# GASDEV -- Return a normally distributed deviate with zero mean and unit
# variance.  The method computes two deviates simultaneously.
#
# Based on Numerical Recipes by Press, Flannery, Teukolsky, and Vetterling.
# Used by permission of the authors.
# Copyright(c) 1986 Numerical Recipes Software.

real procedure gasdev (seed)

long	seed		# Seed for random numbers

real	v1, v2, r, fac, urand()
int	iset
data	iset/0/

begin
	if (iset == 0) {
	    repeat {
	        v1 = 2 * urand (seed) - 1.
	        v2 = 2 * urand (seed) - 1.
	        r = v1 ** 2 + v2 ** 2
	    } until ((r > 0) && (r < 1))
	    fac = sqrt (-2. * log (r) / r)

	    iset = 1
	    return (v1 * fac)
	} else {
	    iset = 0
	    return (v2 * fac)
	}
end


# MR_SOLVE -- Levenberg-Marquardt nonlinear chi square minimization.
#
# Use the Levenberg-Marquardt method to minimize the chi squared of a set
# of paraemters.  The parameters being fit are indexed by the flag array.
# To initialize the Marquardt parameter, MR, is less than zero.  After that
# the parameter is adjusted as needed.  To finish set the parameter to zero
# to free memory.  This procedure requires a subroutine, DERIVS, which
# takes the derivatives of the function being fit with respect to the
# parameters.  There is no limitation on the number of parameters or
# data points.  For a description of the method see NUMERICAL RECIPES
# by Press, Flannery, Teukolsky, and Vetterling, p523.
#
# These routines have their origin in Numerical Recipes, MRQMIN, MRQCOF,
# but have been completely redesigned.

procedure mr_solve (x, y, npts, params, flags, np, nfit, mr, chisq)

real	x[npts]			# X data array
real	y[npts]			# Y data array
int	npts			# Number of data points
real	params[np]		# Parameter array
int	flags[np]		# Flag array indexing parameters to fit
int	np			# Number of parameters
int	nfit			# Number of parameters to fit
real	mr			# MR parameter
real	chisq			# Chi square of fit

int	i
real	chisq1
pointer	new, a1, a2, delta1, delta2

errchk	mr_invert

begin
	# Allocate memory and initialize.
	if (mr < 0.) {
	    call mfree (new, TY_REAL)
	    call mfree (a1, TY_REAL)
	    call mfree (a2, TY_REAL)
	    call mfree (delta1, TY_REAL)
	    call mfree (delta2, TY_REAL)

	    call malloc (new, np, TY_REAL)
	    call malloc (a1, nfit*nfit, TY_REAL)
	    call malloc (a2, nfit*nfit, TY_REAL)
	    call malloc (delta1, nfit, TY_REAL)
	    call malloc (delta2, nfit, TY_REAL)

	    call amovr (params, Memr[new], np)
	    call mr_eval (x, y, npts, Memr[new], flags, np, Memr[a2],
	        Memr[delta2], nfit, chisq)
	    mr = 0.001
	}

	# Restore last good fit and apply the Marquardt parameter.
	call amovr (Memr[a2], Memr[a1], nfit * nfit)
	call amovr (Memr[delta2], Memr[delta1], nfit)
	do i = 1, nfit
	    Memr[a1+(i-1)*(nfit+1)] = Memr[a2+(i-1)*(nfit+1)] * (1. + mr)

	# Matrix solution.
	call mr_invert (Memr[a1], Memr[delta1], nfit)

	# Compute the new values and curvature matrix.
	do i = 1, nfit
	    Memr[new+flags[i]-1] = params[flags[i]] + Memr[delta1+i-1]
	call mr_eval (x, y, npts, Memr[new], flags, np, Memr[a1],
	    Memr[delta1], nfit, chisq1)

	# Check if chisq has improved.
	if (chisq1 < chisq) {
	    mr = 0.1 * mr
	    chisq = chisq1
	    call amovr (Memr[a1], Memr[a2], nfit * nfit)
	    call amovr (Memr[delta1], Memr[delta2], nfit)
	    call amovr (Memr[new], params, np)
	} else
	    mr = 10. * mr

	if (mr == 0.) {
	    call mfree (new, TY_REAL)
	    call mfree (a1,  TY_REAL)
	    call mfree (a2,  TY_REAL)
	    call mfree (delta1, TY_REAL)
	    call mfree (delta2, TY_REAL)
	}
end


# MR_EVAL -- Evaluate curvature matrix.  This calls procedure DERIVS.

procedure mr_eval (x, y, npts, params, flags, np, a, delta, nfit, chisq)

real	x[npts]			# X data array
real	y[npts]			# Y data array
int	npts			# Number of data points
real	params[np]		# Parameter array
int	flags[np]		# Flag array indexing parameters to fit
int	np			# Number of parameters
real	a[nfit,nfit]		# Curvature matrix
real	delta[nfit]		# Delta array
int	nfit			# Number of parameters to fit
real	chisq			# Chi square of fit

int	i, j, k
real	ymod, dy, dydpj, dydpk
pointer	sp, dydp

begin
	call smark (sp)
	call salloc (dydp, np, TY_REAL)

	do j = 1, nfit {
	   do k = 1, j
	       a[j,k] = 0.
	    delta[j] = 0.
	}

	chisq = 0.
	do i = 1, npts {
	    call derivs (x[i], params, ymod, Memr[dydp], np)
	    dy = y[i] - ymod
	    do j = 1, nfit {
		dydpj = Memr[dydp+flags[j]-1]
		delta[j] = delta[j] + dy * dydpj
		do k = 1, j {
		    dydpk = Memr[dydp+flags[k]-1]
		    a[j,k] = a[j,k] + dydpj * dydpk
		}
	    }
	    chisq = chisq + dy * dy
	}

	do j = 2, nfit
	    do k = 1, j-1
		a[k,j] = a[j,k]

	call sfree (sp)
end
	    

# MR_INVERT -- Solve a set of linear equations using Householder transforms.
# This calls a routine published in in "Solving Least Squares Problems",
# by Charles L. Lawson and Richard J. Hanson, Prentice Hall, 1974.

procedure mr_invert (a, b, n)

real	a[n,n]		# Input matrix and returned inverse
real	b[n]		# Input RHS vector and returned solution
int	n		# Dimension of input matrices

int	krank
real	rnorm
pointer	sp, h, g, ip

begin
	call smark (sp)
	call salloc (h, n, TY_REAL)
	call salloc (g, n, TY_REAL)
	call salloc (ip, n, TY_INT)

	call hfti (a, n, n, n, b, n, 1, 0.001, krank, rnorm,
	    Memr[h], Memr[g], Memi[ip])

	call sfree (sp)
end


# TWOFFT - Given two real input arrays DATA1 and DATA2, each of length
# N, this routine calls cc_four1() and returns two complex output arrays,
# FFT1 and FFT2, each of complex length N (i.e. real length 2*N), which
# contain the discrete Fourier transforms of the respective DATAs.  As
# always, N must be an integer power of 2.
#
# Based on Numerical Recipes by Press, Flannery, Teukolsky, and Vetterling.
# Used by permission of the authors.
# Copyright(c) 1986 Numerical Recipes Software.

procedure twofft (data1, data2, fft1, fft2, N)

real	data1[ARB], data2[ARB]	# Input data arrays
real	fft1[ARB], fft2[ARB]	# Output FFT arrays
int	N			# No. of points

int	nn3, nn2, jj, j
real	rep, rem, aip, aim

begin
	nn2 = 2  +  N  +  N
	nn3 = nn2  +  1

	jj = 2
	for (j=1; j <= N; j = j  +  1) {
	    fft1[jj-1] = data1[j]	# Pack 'em into one complex array
	    fft1[jj] = data2[j]
	    jj = jj  +  2
	}

	call four1 (fft1, N, 1)		# Transform the complex array
	fft2[1] = fft1[2]
	fft2[2] = 0.0
	fft1[2] = 0.0
	for (j=3; j <= N + 1; j = j  +  2) {
	    rep = 0.5 * (fft1[j]  +  fft1[nn2-j])
	    rem = 0.5 * (fft1[j] - fft1[nn2-j])
	    aip = 0.5 * (fft1[j + 1]  +  fft1[nn3-j])
	    aim = 0.5 * (fft1[j + 1] - fft1[nn3-j])
	    fft1[j] = rep
	    fft1[j+1] = aim
	    fft1[nn2-j] = rep
	    fft1[nn3-j] = -aim
	    fft2[j] = aip
	    fft2[j+1] = -rem
	    fft2[nn2-j] = aip
	    fft2[nn3-j] = rem
	}

end


# REALFT - Calculates the Fourier Transform of a set of 2N real valued
# data points.  Replaces this data (which is stored in the array DATA) by
# the positive frequency half of it's complex Fourier Transform.  The real
# valued first and last components of the complex transform are returned
# as elements DATA(1) and DATA(2) respectively.  N must be an integer power
# of 2.  This routine also calculates the inverse transform of a complex
# array if it is the transform of real data.  (Result in this case must be
# multiplied by 1/N). A forward transform is perform for isign == 1, other-
# wise the inverse transform is computed.
#
# Based on Numerical Recipes by Press, Flannery, Teukolsky, and Vetterling.
# Used by permission of the authors.
# Copyright(c) 1986 Numerical Recipes Software.

procedure realft (data, N, isign)

real 	data[ARB]	# Input data array & output FFT
int	N		# No. of points
int 	isign		# Direction of transfer

double	wr, wi, wpr, wpi, wtemp, theta	# Local variables
real	c1, c2, h1r, h1i, h2r, h2i
real	wrs, wis
int	i, i1, i2, i3, i4 
int	N2P3

begin
					# Initialize
	theta = PI/double(N)
	c1 = 0.5
	
	if (isign == 1) {
	  c2 = -0.5
	  call four1 (data,n,1)		# Forward transform is here
	} else {
	  c2 = 0.5
	  theta = -theta
	} 

	wtemp = sin (0.5 * theta)
	wpr = -2.0d0 * wtemp * wtemp
	wpi = dsin (theta)
	wr = 1.0D0  +  wpr
	wi = wpi
	n2p3 = 2*n + 3

	for (i=2; i<=n/2; i = i  +  1) {
	  i1 = 2 * i - 1
	  i2 = i1 + 1
	  i3 = n2p3 - i2
	  i4 = i3 + 1
	  wrs = sngl (wr)
	  wis = sngl (wi)
	  			# The 2 transforms are separated out of Z
	  h1r = c1 * (data[i1] + data[i3])	
	  h1i = c1 * (data[i2] - data[i4])
	  h2r = -c2 * (data[i2] + data[i4])
	  h2i = c2 * (data[i1] - data[i3])
				# Here they are recombined to form the true
				# transform of the original real data.
	  data[i1] = h1r + wr*h2r - wi*h2i
	  data[i2] = h1i + wr*h2i + wi*h2r
	  data[i3] = h1r - wr*h2r + wi*h2i
	  data[i4] = -h1i + wr*h2i + wi*h2r

	  wtemp = wr		# The reccurrence
	  wr = wr * wpr - wi * wpi + wr
	  wi = wi * wpr + wtemp * wpi + wi
	}

	if (isign == 1) {
	  h1r = data[1]
	  data[1] = h1r + data[2]
	  data[2] = h1r - data[2]
	} else {
	  h1r = data[1]
	  data[1] = c1 * (h1r + data[2])
	  data[2] = c1 * (h1r - data[2])
	  call four1 (data,n,-1)
	}

end


# FOUR1 -  Replaces DATA by it's discrete transform, if ISIGN is input
# as 1; or replaces DATA by NN times it's inverse discrete Fourier transform
# if ISIGN is input as -1.  Data is a complex array of length NN or, equiv-
# alently, a real array of length 2*NN.  NN *must* be an integer power of
# two.
#
# Based on Numerical Recipes by Press, Flannery, Teukolsky, and Vetterling.
# Used by permission of the authors.
# Copyright(c) 1986 Numerical Recipes Software.

procedure four1 (data, nn, isign)

real	data[ARB]	# Data array (returned as FFT)
int	nn		# No. of points in data array
int	isign		# Direction of transform

double 	wr, wi, wpr, wpi		# Local variables
double	wtemp, theta
real 	tempr, tempi
int	i, j, istep
int	n, mmax, m

begin
	n = 2 * nn
	j = 1
	for (i=1; i<n; i = i  +  2) {
	  if (j > i) {				# Swap 'em
	    tempr = data[j]
	    tempi = data[j+1]
	    data[j] = data[i]
	    data[j+1] = data[i+1]
	    data[i] = tempr
	    data[i+1] = tempi
	  }
	  m = n / 2
	  while (m >= 2 && j > m) {
	    j = j - m
	    m = m / 2
	  }
	  j = j + m
	}
	mmax = 2
	while (n > mmax) {
	  istep = 2 * mmax
	  theta = TWOPI / double (isign*mmax)
	  wtemp = dsin (0.5*theta)
	  wpr = -2.d0 * wtemp * wtemp
	  wpi = dsin (theta)
	  wr = 1.d0
	  wi = 0.d0
	  for (m=1; m < mmax; m = m  +  2) {
	    for (i=m; i<=n; i = i  +  istep) {
		j = i + mmax
		tempr = real (wr) * data[j] - real (wi) * data[j+1]
		tempi = real (wr) * data[j + 1] + real (wi) * data[j]
		data[j] = data[i] - tempr
		data[j+1] = data[i+1] - tempi
		data[i] = data[i] + tempr
		data[i+1] = data[i+1] + tempi
	    }
	    wtemp = wr
	    wr = wr * wpr - wi * wpi + wr
	    wi = wi * wpr + wtemp * wpi + wi
	  } 
	  mmax = istep
	}
end


################################################################################
# LU Decomosition
################################################################################
define	TINY	(1E-20)		# Number of numerical limit

# Given an N x N matrix A, with physical dimension N, this routine
# replaces it by the LU decomposition of a rowwise permutation of
# itself.  A and N are input.  A is output, arranged as in equation
# (2.3.14) above; INDX is an output vector which records the row
# permutation effected by the partial pivioting; D is output as +/-1
# depending on whether the number of row interchanges was even or odd,
# respectively.  This routine is used in combination with LUBKSB to
# solve linear equations or invert a matrix.
#
# Based on Numerical Recipes by Press, Flannery, Teukolsky, and Vetterling.
# Used by permission of the authors.
# Copyright(c) 1986 Numerical Recipes Software.

procedure ludcmp (a, n, np, indx, d)

real	a[np,np]
int	n
int	np
int	indx[n]
real	d

int	i, j, k, imax
real	aamax, sum, dum
pointer	vv

begin
	# Allocate memory.
	call malloc (vv, n, TY_REAL)
	
	# Loop over rows to get the implict scaling information.
	d = 1.
	do i = 1, n {
	    aamax = 0.
	    do j = 1, n {
	        if (abs (a[i,j]) > aamax)
		    aamax = abs (a[i,j])
	    }
	    if (aamax == 0.) {
	    	call mfree (vv, TY_REAL)
	        call error (1, "Singular matrix")
	    }
	    Memr[vv+i-1] = 1. / aamax
	}

	# This is the loop over columns of Crout's method.
	do j = 1, n {
	    do i = 1, j-1 {
	        sum = a[i,j]
		do k = 1, i-1
		    sum = sum - a[i,k] * a[k,j]
		a[i,j] = sum
	    }

	    aamax = 0.
	    do i = j, n {
	        sum = a[i,j]
		do k = 1, j-1
		    sum = sum - a[i,k] * a[k,j]
		a[i,j] = sum
		dum = Memr[vv+i-1] * abs (sum)
		if (dum >= aamax) {
		    imax = i
		    aamax = dum
		}
	    }

	    if (j != imax) {
	        do k = 1, n {
		    dum = a[imax,k]
		    a[imax,k] = a[j,k]
		    a[j,k] = dum
		}
		d = -d
		Memr[vv+imax-1] = Memr[vv+j-1]
	    }
	    indx[j] = imax

	    # Now, finally, divide by the pivot element.
	    # If the pivot element is zero the matrix is signular (at
	    # least to the precission of the algorithm.  For some
	    # applications on singular matrices, it is desirable to
	    # substitute TINY for zero.

	    if (a[j,j] == 0.)
	        a[j,j] = TINY
	    if (j != n) {
	        dum = 1. / a[j,j]
		do i = j+1, n
		    a[i,j] = a[i,j] * dum
	    }
	}

	call mfree (vv, TY_REAL)
end


# Solves the set of N linear equations AX = B.  Here A is input, not
# as the matrix of A but rather as its LU decomposition, determined by
# the routine LUDCMP.  INDX is input as the permuation vector returned
# by LUDCMP.  B is input as the right-hand side vector B, and returns
# with the solution vector X.  A, N, NP and INDX are not modified by
# this routine and can be left in place for successive calls with
# different right-hand sides B.  This routine takes into account the
# possiblity that B will begin with many zero elements, so it is
# efficient for use in matrix inversion.
#
# Based on Numerical Recipes by Press, Flannery, Teukolsky, and Vetterling.
# Used by permission of the authors.
# Copyright(c) 1986 Numerical Recipes Software.

procedure lubksb (a, n, np, indx, b)

real	a[np,np]
int	n
int	np
int	indx[n]
real	b[n]

int	i, j, ii, ll
real	sum

begin
	ii = 0
	do i = 1, n {
	    ll = indx[i]
	    sum = b[ll]
	    b[ll] = b[i]
	    if (ii != 0) {
	        do j = ii, i-1
		    sum = sum - a[i,j] * b[j]
	    } else if (sum != 0.)
	        ii = i
	    b[i] = sum
	}

	do i = n, 1, -1 {
	    sum = b[i]
	    if (i < n) {
	        do j = i+1, n
		    sum = sum - a[i,j] * b[j]
	    }
	    b[i] = sum / a[i,i]
	}
end


# Invert a matrix using LU decomposition using A as both input and output.

procedure luminv (a, n, np)

real	a[np,np]
int	n
int	np

int	i, j
real	d
pointer	y, indx

begin
	# Allocate working memory.
	call calloc (y, n*n, TY_REAL)
	call malloc (indx, n, TY_INT)

	# Setup identify matrix.
	do i = 0, n-1
	    Memr[y+(n+1)*i] = 1.

	# Do LU decomposition.
	call ludcmp (a, n, np, Memi[indx], d)

	# Find inverse by columns.
	do j = 0, n-1
	    call lubksb (a, n, np, Memi[indx], Memr[y+n*j])

	# Return inverse in a.
	do i = 1, n
	    do j = 1, n
	        a[i,j] = Memr[y+n*(j-1)+(i-1)]

	call mfree (y, TY_REAL)
end
################################################################################