aboutsummaryrefslogtreecommitdiff
path: root/sys/gio/cursor/gtrwstran.x
blob: 9262e00a4c9f3d52043b0a443b23e2b1ecf1a6c2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.

include	<mach.h>
include	<gio.h>
include	<gki.h>
include	"gtr.h"

define	MOVE		0
define	DRAW		1
define	LEFT		0
define	RIGHT		1
define	BELOW		0
define	ABOVE		1
define	INSIDE		2
define	FIRSTPT		GKI_POLYLINE_P


# GTR_WSTRAN -- Apply the workstation transformation to an instruction and
# write the transformed instruction to the graphics kernel.  The transformation
# parameters etc. should have been initialized in the gtr common before we
# are called.

procedure gtr_wstran (gki)

short	gki[ARB]		#I metacode instruction to be spooled

long	x, y
pointer	sp, buf
int	length, npts, data
int	gtr_polyclip()
bool	sge_wsenable()
include	"gtr.com"

begin
	# Check with the graphics kernel to see if scaling of graphics
	# instructions is enabled (it is disabled if the graphics device is
	# already doing it for us).

	if (!sge_wsenable()) {
	    call gki_write (tr_stream, gki)
	    return
	}

	switch (gki[GKI_HDR_OPCODE]) {
	case GKI_FILLAREA:
	    npts = gki[GKI_FILLAREA_N]
	    data = GKI_FILLAREA_P
	    length = gki[GKI_HDR_LENGTH]
	    call amovs (gki, pl, length)

	    switch (gtr_polyclip (pl[data], npts, mx1, mx2, my1, my2)) {
	    case 0:
		# Entire instruction out of bounds.
	    case 1:
		# Entire instruction in bounds.
		pl_op = GKI_POLYLINE_P + npts * 2
		call gpt_flush()
	    default:
		# Instruction has been clipped.
		pl_op = GKI_POLYLINE_P + npts * 2
		call gpt_flush()
	    }

	case GKI_POLYLINE, GKI_POLYMARKER:
	    call gtr_polytran (gki)

	case GKI_SETCURSOR:
	    length = gki[GKI_HDR_LENGTH]
	    call smark (sp)
	    call salloc (buf, length, TY_SHORT)

	    # Move cursor to edge of screen if point referenced is out of
	    # bounds.

	    call amovs (gki, Mems[buf], length)
	    x = gki[GKI_SETCURSOR_POS]
	    y = gki[GKI_SETCURSOR_POS+1]
	    call gtr_ctran (x, y, x, y)
	    Mems[buf+GKI_SETCURSOR_POS-1] = x
	    Mems[buf+GKI_SETCURSOR_POS]   = y
	    call gki_write (tr_stream, Mems[buf])

	    call sfree (sp)

	case GKI_TEXT:
	    length = gki[GKI_HDR_LENGTH]
	    call smark (sp)
	    call salloc (buf, length, TY_SHORT)

	    # Discard text drawing instruction if the point referenced is
	    # out of bounds.  If in bounds, transform coordinates and draw
	    # at the transformed point.

	    call amovs (gki, Mems[buf], length)
	    x = gki[GKI_TEXT_P]
	    y = gki[GKI_TEXT_P+1]
	    if (x >= mx1 && x <= mx2 && y >= my1 && y <= my2) {
		call gtr_ctran (x, y, x, y)
		Mems[buf+GKI_TEXT_P-1] = x
		Mems[buf+GKI_TEXT_P]   = y
		call gki_write (tr_stream, Mems[buf])
	    }

	    call sfree (sp)

	case GKI_PUTCELLARRAY:
	    # Just filter these out for now.

	default:
	    call gki_write (tr_stream, gki)
	}
end


# GTR_CTRAN -- Apply the workstation transform to a set of GKI coordinates,
# i.e., transform raw GKI coords to screen coords in GKI units.

procedure gtr_ctran (mx, my, sx, sy)

int	mx, my			# raw GKI coordinates
int	sx, sy			# screen coordinates in GKI units
include	"gtr.com"

begin
	sx = max(0, min(GKI_MAXNDC, nint ((mx - mx1) * xscale + xorigin)))
	sy = max(0, min(GKI_MAXNDC, nint ((my - my1) * yscale + yorigin)))
end


# GTR_POLYTRAN -- Scale a polyline, polymarker, or fill area instruction
# by applying the workstation transformation.  The workstation transformation
# scales vectors in a viewport defined in NDC(GKI) space to fit the full
# device screen.  Vectors or segments of vectors lying outside the viewport
# are clipped at the screen boundary.

procedure gtr_polytran (gki)

short	gki[ARB]		# gki instruction to be transformed
long	mx, my
int	last_ip, opcode, i, ip
bool	inbounds, otherside, points
int	gpt_firstpt()
include	"gtr.com"

begin
	last_ip = gki[GKI_HDR_LENGTH]
	opcode  = gki[GKI_HDR_OPCODE]
	points  = (opcode == GKI_POLYMARKER)

	# In the process of clipping a polyline may be broken into several
	# smaller polylines (or polymarkers or fillareas, all of which are
	# very similar at the instruction level).  We store the GKI header
	# in the first few words of the PL array so that when the transformed
	# polyline is broken it is ready for execution.

	do i = 1, GKI_POLYLINE_P - 1
	    pl[i] = gki[i]
	pl_op = GKI_POLYLINE_P

	# Clip all points until either a point is encountered which is inbounds
	# or which is on the other side of the viewport (in either axis).  This
	# is a fast way of clipping polylines which are mostly out of bounds.
	# Return immediately if the entire vector is out of bounds.

	otherside = true
	ip = FIRSTPT
	if (gpt_firstpt (gki, ip, last_ip) <= 0)
	    return

	# Set initial position.
	cx = gki[ip]
	cy = gki[ip+1]

	# Clip the remaining points.  Clipping is performed in GKI coordinates.
	# The workstation transformation is not applied until the clipped
	# vector is output.

	for (ip=ip+2;  ip < last_ip;  ip=ip+2) {
	    mx = gki[ip]
	    my = gki[ip+1]

	    # Check to see if this is the first point of a new polyline.
	    # If so we must set the first physical point in the output
	    # polyline to the current position, making the current point
	    # the second physical point of the output polyline.

	    if (pl_op <= GKI_POLYLINE_P) {
		# Place the current pen position in the polyline as the
		# first point if it is inbounds.

		if (cy <= my2 && cy >= my1 && cx <= mx2 && cx >= mx1) {
		    last_point_inbounds = true
		    pl[pl_op] = cx
		    pl_op = pl_op + 1
		    pl[pl_op] = cy
		    pl_op = pl_op + 1
		} else {
		    last_point_inbounds = false
		    do i = 1, 4 {
			xs[i] = cx
			ys[i] = cy
		    }
		}
	    }

	    # Update the current position.

	    cx = mx
	    cy = my

	    # Clip at the edge of the device screen.

	    inbounds = (my <= my2 && my >= my1 && mx <= mx2 && mx >= mx1)

	    if (inbounds && (last_point_inbounds || points)) {
		# Add point to polyline (the fast way).
		pl[pl_op] = mx
		pl_op = pl_op + 1
		pl[pl_op] = my
		pl_op = pl_op + 1

	    } else if ((inbounds||last_point_inbounds||otherside) && !points) {
		# Clip at viewport boundary.

		if (last_point_inbounds) {
		    # Update coords of last point drawn (necessary since we did
		    # not use the clipping code for inbounds points).
		    do i = 1, 4 {
			xs[i] = pl[pl_op-2]
			ys[i] = pl[pl_op-1]
		    }
		}
		call gpt_clipl (DRAW, mx, my)
		otherside = false

	    } else {
		# Both points are out of bounds.  Scan along until a point is
		# found which is again in bounds, or which is on the other side
		# of the viewport, requiring clipping across the viewport.

		if (gpt_firstpt (gki, ip, last_ip) > 0) {
		    do i = 1, 4 {
			xs[i] = gki[ip]
			ys[i] = gki[ip+1]
		    }
		    cx = gki[ip]
		    cy = gki[ip+1]
		}

		otherside = true
		inbounds = false
	    }

	    last_point_inbounds = inbounds
	}

	call gpt_flush()
end


# GPT_FIRSTPT -- Scan a vector and return the index of the next good point.
# A good point is a point which is either inbounds or which preceeds a point
# which is either inbounds or on the other side of the viewport, necessitating
# clipping across the viewport.

int procedure gpt_firstpt (gki, ip, last_ip)

short	gki[ARB]			# vector being clipped
int	last_ip				# last legal value of ip
int	ip				# starting index

int	mx, my, i
int	first_ip, new_ip
include	"gtr.com"

begin
	mx = gki[ip]
	my = gki[ip+1]
	first_ip = ip
	new_ip = last_ip

	if (mx < mx1) {
	    do i=ip+2, last_ip, 2
		if (gki[i] >= mx1) {
		    new_ip = i
		    break
		}
	} else if (mx > mx2) {
	    do i=ip+2, last_ip, 2
		if (gki[i] <= mx2) {
		    new_ip = i
		    break
		}
	} else if (my < my1) {
	    do i=ip+3, last_ip, 2
		if (gki[i] >= my1) {
		    new_ip = i - 1
		    break
		}
	} else if (my > my2) {
	    do i=ip+3, last_ip, 2
		if (gki[i] <= my2) {
		    new_ip = i - 1
		    break
		}
	} else
	    return (ip)

	if (new_ip >= last_ip)
	    return (0)			# entire vector is indefinite
	else
	    ip = max (first_ip, new_ip - 2)

	return (ip)
end


# GPT_CLIPL -- Clip at left boundary.

procedure gpt_clipl (pen, mx, my)

int	pen			# move or draw
long	mx, my			# point to be clipped
long	new_my
int	newpen
include	"gtr.com"

begin
	# Does line cross boundary?
	if ((mx >= mx1 && xs[1] < mx1) || (mx <= mx1 && xs[1] > mx1)) {
	    if (mx >= mx1)
		newpen = MOVE
	    else
		newpen = pen
	    new_my = real(my - ys[1]) * real(mx1 - mx) / real(mx - xs[1]) +
		my + 0.5
	    call gpt_clipr (newpen, mx1, new_my)
	}

	xs[1] = mx
	ys[1] = my

	if (mx >= mx1)
	    call gpt_clipr (pen, mx, my)
end


# GPT_CLIPR -- Clip at right boundary.

procedure gpt_clipr (pen, mx, my)

int	pen			# move or draw
long	mx, my			# point to be clipped
long	new_my
int	newpen
include	"gtr.com"

begin
	# Does line cross boundary?
	if ((mx <= mx2 && xs[2] > mx2) || (mx >= mx2 && xs[2] < mx2)) {
	    if (mx <= mx2)
		newpen = MOVE
	    else
		newpen = pen
	    new_my = real(my - ys[2]) * real(mx2 - mx) / real(mx - xs[2]) +
		my + 0.5
	    call gpt_clipb (newpen, mx2, new_my)
	}

	xs[2] = mx
	ys[2] = my

	if (mx <= mx2)
	    call gpt_clipb (pen, mx, my)
end


# GPT_CLIPB -- Clip at bottom boundary.

procedure gpt_clipb (pen, mx, my)

int	pen			# move or draw
long	mx, my			# point to be clipped
long	new_mx
int	newpen
include	"gtr.com"

begin
	# Does line cross boundary?
	if ((my >= my1 && ys[3] < my1) || (my <= my1 && ys[3] > my1)) {
	    if (my >= my1)
		newpen = MOVE
	    else
		newpen = pen
	    new_mx = real(mx - xs[3]) * real(my1 - my) / real(my - ys[3]) +
		mx + 0.5
	    call gpt_clipt (newpen, new_mx, my1)
	}

	xs[3] = mx
	ys[3] = my

	if (my >= my1)
	    call gpt_clipt (pen, mx, my)
end


# GPT_CLIPT -- Clip at top boundary and put the final clipped point(s) in
# the output polyline.  Note that a "move" at this level does not affect
# the current position (cx,cy), since the vector endpoints have been clipped
# and the current position vector follows the unclipped vector points input
# by the user.

procedure gpt_clipt (pen, mx, my)

int	pen			# move or draw
long	mx, my			# point to be clipped
include	"gtr.com"

begin
	# Does line cross boundary?
	if ((my <= my2 && ys[4] > my2) || (my >= my2 && ys[4] < my2)) {
	    if (my <= my2 || pen == MOVE)
		call gpt_flush()
	    pl[pl_op] = real(mx - xs[4]) * real(my2 - my) / real(my - ys[4]) +
		mx + 0.5
	    pl_op = pl_op + 1
	    pl[pl_op] = my2
	    pl_op = pl_op + 1
	}

	xs[4] = mx
	ys[4] = my

	if (my <= my2) {
	    if (pen == MOVE)
		call gpt_flush()
	    pl[pl_op] = mx
	    pl_op = pl_op + 1
	    pl[pl_op] = my
	    pl_op = pl_op + 1
	}
end


# GPT_FLUSH -- Flush the buffered "polyline", i.e., array of transformed and
# clipped points.  For a polyline or fill area polygon there must be at least
# two points (4 cells) or it will be discarded.  A single point polymarker is
# permitted.

procedure gpt_flush()

int	npts, i
long	mx, my
include	"gtr.com"

begin
	if (pl_op >= GKI_POLYLINE_P + 2) {
	    npts = (pl_op - GKI_POLYLINE_P) / 2

	    # Apply the workstation transformation.
	    do i = GKI_POLYLINE_P, pl_op, 2 {
		mx = nint ((pl[i]   - mx1) * xscale + xorigin)
		my = nint ((pl[i+1] - my1) * yscale + yorigin)
		pl[i]   = max(0, min(GKI_MAXNDC, mx))
		pl[i+1] = max(0, min(GKI_MAXNDC, my))
	    }

	    switch (pl[GKI_HDR_OPCODE]) {
	    case GKI_POLYMARKER:
		pl[GKI_POLYMARKER_L] = pl_op - 1
		pl[GKI_POLYMARKER_N] = npts
		call gki_write (tr_stream, pl)

	    case GKI_FILLAREA:
		pl[GKI_FILLAREA_L] = pl_op - 1
		pl[GKI_FILLAREA_N] = npts
		call gki_write (tr_stream, pl)

	    default:
		if (npts >= 2) {
		    pl[GKI_POLYLINE_L] = pl_op - 1
		    pl[GKI_POLYLINE_N] = npts
		    call gki_write (tr_stream, pl)
		}
	    }

	    pl_op = GKI_POLYLINE_P
	}
end