1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
# SPP/Yacc specification for a simple desk calculator. Input consists
# of simple arithmetic expressions; output is the value of the expression.
# Operands are restricted to integer and real numeric constants.
%{
include <ctype.h>
include <lexnum.h>
define YYMAXDEPTH 150 # length of parser stack
task dc = t_dc
# Operand Structure (parser stack)
define YYOPLEN 2 # size of operand structure
define OPTYPE Memi[$1] # operand datatype
define OPVALI Memi[$1+1] # integer value of operand
define OPVALR Memr[$1+1] # real value of operand
%}
%token CONST LETTER YYEOF
%left '+' '-'
%left '*' '/'
%left UMINUS
%%
prog : # Empty
| prog stmt eost {
return (OK)
}
| YYEOF {
return (EOF)
}
| prog error '\n' {
yyerrok
}
;
stmt : expr {
# Print the value of an expression.
if (OPTYPE($1) == TY_INT) {
call printf ("%d\n")
call pargi (OPVALI($1))
} else {
call printf ("%g\n")
call pargr (OPVALR($1))
}
}
| LETTER '=' expr {
# Set the value of a register (from a-z).
call putreg (OPVALI($1), $3)
}
;
expr : '(' expr ')' {
YYMOVE ($2, $$)
}
| expr '+' opnl expr {
call binop ($1, $4, $$, '+')
}
| expr '-' opnl expr {
call binop ($1, $4, $$, '-')
}
| expr '*' opnl expr {
call binop ($1, $4, $$, '*')
}
| expr '/' opnl expr {
call binop ($1, $4, $$, '/')
}
| '-' expr %prec UMINUS {
call unop ($2, $$, '-')
}
| LETTER {
call getreg (OPVALI($1), $$)
}
| CONST
;
eost : ';'
| '\n'
;
opnl : # Empty
| opnl '\n'
;
%%
# DC -- Main routine for the desk calculator.
procedure t_dc()
bool debug
int status
bool clgetb()
int yyparse()
extern yylex()
begin
debug = clgetb ("debug")
repeat {
status = yyparse (STDIN, debug, yylex)
if (status == ERR)
call eprintf ("syntax error")
} until (status == EOF)
end
# BINOP -- Perform an arithmetic binary operation on two operands (passed
# by pointer), returning the result in a third.
procedure binop (a, b, c, operation)
pointer a, b, c # c = a op b
int operation # i.e., '+', '-', etc.
int i, j, k
real x, y, z
begin
if (OPTYPE(a) == TY_INT && OPTYPE(b) == TY_INT) {
# Both operands are of type int, so return an integer result.
i = OPVALI(a)
j = OPVALI(b)
switch (operation) {
case '+':
k = i + j
case '-':
k = i - j
case '*':
k = i * j
case '/':
k = i / j
default:
call error (1, "unknown binary operator")
}
OPVALI(c) = k
OPTYPE(c) = TY_INT
} else {
# At least one of the two operands is a real. Perform the
# calculation in type real, producing a real result.
if (OPTYPE(a) == TY_INT)
x = OPVALI(a)
else
x = OPVALR(a)
if (OPTYPE(b) == TY_INT)
y = OPVALI(b)
else
y = OPVALR(b)
switch (operation) {
case '+':
z = x + y
case '-':
z = x - y
case '*':
z = x * y
case '/':
z = x / y
default:
call error (1, "unknown binary operator")
}
OPVALR(c) = z
OPTYPE(c) = TY_REAL
}
end
# UNOP -- Perform a unary operation. Since there is only one operand, the
# datatype does not change.
procedure unop (a, b, operation)
pointer a, b
int operation
begin
OPTYPE(b) = OPTYPE(a)
switch (operation) {
case '-':
switch (OPTYPE(a)) {
case TY_INT:
OPVALI(b) = -OPVALI(a)
case TY_REAL:
OPVALR(b) = -OPVALR(a)
}
default:
call error (2, "unknown unary operator")
}
end
# GETREG, PUTREG -- Fetch or store the contents of a register variable.
# Registers are referred to by letter, A-Z or a-z.
define MAXREG ('z'-'a'+1)
procedure getreg (regchar, op)
int regchar
pointer op
bool store
int regbuf[MAXREG*YYOPLEN]
int reg, offset
begin
store = false
goto 10
entry putreg (regchar, op)
store = true
# Compute offset into storage. Structures are stored in buffer
# by a binary copy, knowing only the length of the structure.
10 if (IS_UPPER(regchar))
reg = regchar - 'A' + 1
else
reg = regchar - 'a' + 1
reg = max(1, min(MAXREG, reg))
offset = (reg-1) * YYOPLEN + 1
# Copy the operand structure either in or out.
if (store)
call amovi (Memi[op], regbuf[offset], YYOPLEN)
else
call amovi (regbuf[offset], Memi[op], YYOPLEN)
end
# YYLEX -- Lexical input routine. Return next token from the input
# stream. Recognized tokens are CONST (numeric constants), LETTER,
# and the operator characters.
int procedure yylex (fd, yylval)
int fd
pointer yylval
char ch, lbuf[SZ_LINE]
int ip, nchars, token, junk
double dval
int lexnum(), getline(), gctod()
data ip /0/
begin
# Fetch a nonempty input line, or advance to start of next token
# if within a line. Newline is a token.
repeat {
if (ip <= 0 || lbuf[ip] == EOS) {
if (getline (fd, lbuf) == EOF) {
ip = 0
return (YYEOF)
} else
ip = 1
}
while (IS_WHITE (lbuf[ip]))
ip = ip + 1
} until (lbuf[ip] != EOS)
# Determine type of token. If numeric constant, convert to binary
# and return value in op structure (yylval). If letter (register
# variable) return value and advance input one char. If any other
# character, return char itself as the token, and advance input one
# character.
if (IS_DIGIT (lbuf[ip]))
token = lexnum (lbuf, ip, nchars)
else
token = LEX_NONNUM
switch (token) {
case LEX_OCTAL, LEX_DECIMAL, LEX_HEX:
junk = gctod (lbuf, ip, dval)
OPTYPE(yylval) = TY_INT
OPVALI(yylval) = int (dval)
return (CONST)
case LEX_REAL:
junk = gctod (lbuf, ip, dval)
OPTYPE(yylval) = TY_REAL
OPVALR(yylval) = dval
return (CONST)
default:
ch = lbuf[ip]
ip = ip + 1
if (IS_ALPHA (ch)) {
OPTYPE(yylval) = LETTER
OPVALI(yylval) = ch
return (LETTER)
} else {
OPTYPE(yylval) = ch
return (OPTYPE(yylval))
}
}
end
|