1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
define MAX_ITERATIONS 20
# CCGSXY -- Routine for computing X,Y pixel position from a given RA and Dec
# on a GSSS plate.
procedure ccgsxy (plate_centre_ra,
plate_centre_dec,
plate_centre_x,
plate_centre_y,
x_pixel_size,
y_pixel_size,
plate_scale,
amd_x,
amd_y,
object_x,
object_y,
object_mag,
object_col,
object_ra,
object_dec)
double plate_centre_ra #Plate Right Ascension (radians)
double plate_centre_dec #Plate Declination (radians)
double plate_centre_x #Position used in soln.(microns)
double plate_centre_y # "
double x_pixel_size #Scan pixel size (microns)
double y_pixel_size # "
double plate_scale #Plate scale (arcsec/mm)
double amd_x[20] #Plate model coefficients
double amd_y[20] # "
double object_x #Pixel position for object
double object_y # "
double object_mag #Object magnitude
double object_col #Colour
double object_ra #Object RA (radians)
double object_dec # " Dec
double xi_object #Standard coords (arcsec)
double eta_object # "
double x #Position from centre (mm)
double y # "
double delta_x #correction to x
double delta_y #correction to y
int n_iterations #no.iterations used
double f #Function for x model
double g #Function for y model
double fx #Deriv. x model wrt x
double gx #Deriv. y model wrt x
double fy #Deriv. x model wrt y
double gy #deriv. y model wrt y
int ierr #Stats flag
begin
#
# Convert RA and Dec to standard coordinates
#
call treqst (plate_centre_ra, plate_centre_dec,
object_ra, object_dec, xi_object, eta_object)
# Iterate by Newtons method
n_iterations = 0
ierr = 0
# Get initial estimate of x,y
x = xi_object / plate_scale
y = eta_object / plate_scale
while (ierr == 0) {
n_iterations=n_iterations+1
#
# X plate model
#
f = amd_x(1)*x +
amd_x(2)*y +
amd_x(3) +
amd_x(4)*x*x +
amd_x(5)*x*y +
amd_x(6)*y*y +
amd_x(7)*(x*x+y*y) +
amd_x(8)*x*x*x +
amd_x(9)*x*x*y +
amd_x(10)*x*y*y +
amd_x(11)*y*y*y +
amd_x(12)*x*(x*x+y*y) +
amd_x(13)*x*(x*x+y*y)**2 +
amd_x(14)*object_mag +
amd_x(15)*object_mag**2 +
amd_x(16)*object_mag**3 +
amd_x(17)*object_mag*x +
amd_x(18)*object_mag*(x*x+y*y) +
amd_x(19)*object_mag*x*(x*x+y*y) +
amd_x(20)*object_col -
xi_object
#
# Derivative of X model wrt x
#
fx = amd_x(1) +
amd_x(4)*2.0*x +
amd_x(5)*y +
amd_x(7)*2.0*x +
amd_x(8)*3.0*x*x +
amd_x(9)*2.0*x*y +
amd_x(10)*y*y +
amd_x(12)*(3.0*x*x+y*y) +
amd_x(13)*(5.0*x**4+6.0*x*x*y*y+y**4) +
amd_x(17)*object_mag +
amd_x(18)*object_mag*2.0*x +
amd_x(19)*object_mag*(3.0*x*x+y*y)
#
# Derivative of X model wrt y
#
fy = amd_x(2) +
amd_x(5)*x +
amd_x(6)*2.0*y +
amd_x(7)*2.0*y +
amd_x(9)*x*x +
amd_x(10)*x*2.0*y +
amd_x(11)*3.0*y*y +
amd_x(12)*2.0*x*y +
amd_x(13)*4.0*x*y*(x*x+y*y) +
amd_x(18)*object_mag*2.0*y +
amd_x(19)*object_mag*2.0*x*y
#
# Y plate model
#
g = amd_y(1)*y +
amd_y(2)*x +
amd_y(3) +
amd_y(4)*y*y +
amd_y(5)*y*x +
amd_y(6)*x*x +
amd_y(7)*(x*x+y*y) +
amd_y(8)*y*y*y +
amd_y(9)*y*y*x +
amd_y(10)*y*x*x +
amd_y(11)*x*x*x +
amd_y(12)*y*(x*x+y*y) +
amd_y(13)*y*(x*x+y*y)**2 +
amd_y(14)*object_mag +
amd_y(15)*object_mag**2 +
amd_y(16)*object_mag**3 +
amd_y(17)*object_mag*y +
amd_y(18)*object_mag*(x*x+y*y) +
amd_y(19)*object_mag*y*(x*x+y*y) +
amd_y(20)*object_col -
eta_object
#
# Derivative of Y model wrt x
#
gx = amd_y(2) +
amd_y(5)*y +
amd_y(6)*2.0*x +
amd_y(7)*2.0*x +
amd_y(9)*y*y +
amd_y(10)*y*2.0*x +
amd_y(11)*3.0*x*x +
amd_y(12)*2.0*x*y +
amd_y(13)*4.0*x*y*(x*x+y*y) +
amd_y(18)*object_mag*2.0*x +
amd_y(19)*object_mag*y*2.0*x
#
# Derivative of Y model wrt y
#
gy = amd_y(1) +
amd_y(4)*2.0*y +
amd_y(5)*x +
amd_y(7)*2.0*y +
amd_y(8)*3.0*y*y +
amd_y(9)*2.0*y*x +
amd_y(10)*x*x +
amd_y(12)*3.0*y*y +
amd_y(13)*(5.0*y**4+6.0*x*x*y*y+x**4) +
amd_y(17)*object_mag +
amd_y(18)*object_mag*2.0*y +
amd_y(19)*object_mag*(x*x+3.0*y*y)
delta_x = (-f * gy + g * fy) / (fx * gy - fy * gx)
delta_y = (-g * fx + f * gx) / (fx * gy - fy * gx)
x = x + delta_x
y = y + delta_y
if (dmax1 (dabs(delta_x), dabs(delta_y),
dabs(f), dabs(g)) < 1.e-5)
ierr=1
if (n_iterations == MAX_ITERATIONS)
ierr=2
}
# Convert x,y from mm about plate centre to pixels
object_x = (plate_centre_x - x*1000.0d0) / x_pixel_size
object_y = (plate_centre_y + y*1000.0d0) / y_pixel_size
end
|