1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
PROGRAM BROADENX
c constants given D exponents
c revised 31jan01 changed read statement for wledge
c
C TAPE5=INPUT
C TAPE6=OUTPUT
C TAPE21=SPECTRUM INPUT
C TAPE22=SPECTRUM OUTPUT
C THE MINIMUM DIMENSION OF H IS (NWL+19999+19999)*NMU
C FOR FLUX SPECTRA NMU IS 1
C DIMENSION H(4000000)
DIMENSION H(4100000)
DIMENSION RED(20000),BLUE(20000)
DIMENSION RED1(20000),BLUE1(20000),RED2(20000),BLUE2(20000)
EQUIVALENCE (RED(1),RED1(1)),(BLUE(1),BLUE1(1))
CHARACTER*10 A,B
CHARACTER*50 COMMENT
REAL*8 LINDAT8(14)
REAL*4 LINDAT4(28)
DIMENSION XMU(20),QMU(40),WLEDGE(377),TITLE(74)
REAL*8 TEFF,GLOG,TITLE,WBEGIN,RESOLU,XMU,WLEDGE,RATIO
REAL*8 QMU
CHARACTER*1 APLOT(101)
DATA APLOT/101*' '/
LINOUT=300
REWIND 21
READ(21)TEFF,GLOG,TITLE,WBEGIN,RESOLU,NWL,IFSURF,NMU,XMU,NEDGE,
1(WLEDGE(iedge),iedge=1,nedge)
WRITE(6,1010)TEFF,GLOG,TITLE
1010 FORMAT( 5H TEFF,F7.0,7H GRAV,F7.3/7H TITLE ,74A1)
WRITE(6,1007)NMU,(XMU(IMU),IMU=1,NMU)
1007 FORMAT(I4,20F6.3)
C IFSURF=3 FOR ROTATED SPECTRUM
IF(IFSURF.EQ.3) NMU=1
RATIO=1.+1./RESOLU
WEND=WBEGIN*RATIO**(NWL-1)
WCEN=(WBEGIN+WEND)*.5
VSTEP=2.99792458D5/RESOLU
WRITE(6,1005)WBEGIN,WEND,RESOLU,VSTEP,NWL
1005 FORMAT(2F14.5,F12.1,F12.5,I10)
NMU1=NMU+1
NMU2=NMU+NMU
C
C SAMPLE CARDS RIGHT SHIFTED BY 1
C THESE ARE EVALUATED AT WLCEN AND HAVE CONSTANT
C RESOLUTION OR RESOLVING POWER
CGAUSSIAN 3.5 KM COMMENT FIELD
CGAUSSIAN 100000. RESOLUTION COMMENT FIELD
CGAUSSIAN 7. PM COMMENT FIELD
CGAUSSIAN .01 CM-1 COMMENT FIELD
CSINX/X 3.5 KM COMMENT FIELD
CSINX/X 100000. RESOLUTION COMMENT FIELD
CSINX/X 7. PM COMMENT FIELD
CSINX/X .01 CM-1 COMMENT FIELD
CRECT 7. PM COMMENT FIELD
CRECT 3.5 KM COMMENT FIELD
CRECT 100000. RESOLUTION COMMENT FIELD
CREDT .01 CM-1 COMMENT FIELD
CMACRO 2.0 KM COMMENT FIELD
CPROFILE 5. POINTS COMMENT FIELD
CRED .3 .1 .1 .1 .05
CBLUE .3 .1 .1 .1 .05
C POINTS ARE TABULATED AT THE SPACING OF THE COMPUTED SPECTRUM
C THE CENTER IS THE FIRST POINT FOR EACH WING
C TAKING THE CENTER ONLY ONCE, THE PROFILE SUMS TO 1.
C
C IN THESE PROFILES THE RESOLUTION OR RESOLVING POWER VARIES
C THEY ARE LINEARLY INTERPOLATED FROM WLBEG TO WLEND
C AT WLBEG AT WLEND
CGAUSSIAN 3.5 KM 3. COMMENT FIELD
CGAUSSIAN 100000. RESOLUTION 120000. COMMENT FIELD
CGAUSSIAN 7. PM 7. COMMENT FIELD
CGAUSSIAN .01 CM-1 .01 COMMENT FIELD
CSINX/X 3.5 KM 3. COMMENT FIELD
CSINX/X 100000. RESOLUTION 120000. COMMENT FIELD
CSINX/X 7. PM 7. COMMENT FIELD
CSINX/X .01 CM-1 .01 COMMENT FIELD
CRECT 7. PM 7. COMMENT FIELD
CRECT 3.5 KM 3. COMMENT FIELD
CRECT 100000. RESOLUTION 120000. COMMENT FIELD
CRECT .01 CM-1 .01 COMMENT FIELD
CPROFILE 5. POINTS 5. COMMENT FIELD
CRED .3 .1 .1 .1 .05
CBLUE .3 .1 .1 .1 .05
CRED .25 .125 .1 .1 .05
CBLUE .25 .125 .1 .1 .05
READ(5,1)A,X1,B,X2,COMMENT
1 FORMAT(A10,F10.2,A10,F10.2,A50)
WRITE(6,2)A,X1,B,X2,COMMENT
2 FORMAT(1X,A10,F10.2,A10,F10.2,A50)
FWHM=-1.
IF(B.EQ.'PM ')FWHM=X1/WCEN/1000.*299792.458D0
IF(B.EQ.'KM ')FWHM=X1
IF(B.EQ.'RESOLUTION')FWHM=299792.458D0/X1
IF(B.EQ.'CM-1 ')FWHM=X1/(1.E7/WCEN)*299792.458D0
IF(FWHM.LT.0.)THEN
WRITE(6,3)
CALL EXIT
ENDIF
FWHM1=FWHM
FWHM2=FWHM
IF(X2.GT.0.)THEN
IF(B.EQ.'PM ')FWHM2=X2/WCEN/1000.*299792.458D0
IF(B.EQ.'KM ')FWHM2=X2
IF(B.EQ.'RESO ')FWHM2=299792.458D0/X2
IF(B.EQ.'CM-1 ')FWHM2=X2/(1.E7/WCEN)*299792.458D0
ENDIF
IF(A.EQ.'MACRO ')GO TO 10
IF(A.EQ.'GAUSSIAN ')GO TO 20
IF(A.EQ.'SINX/X ')GO TO 60
IF(A.EQ.'RECT ')GO TO 30
IF(A.EQ.'PROFILE ')GO TO 40
WRITE(6,3)
3 FORMAT(10H0BAD INPUT)
CALL EXIT
C
C MACROTURBULENT VELOCITY IN KM
10 VMAC=X1
DO 11 I=1,20000
RED(I)=EXP(-(FLOAT(I-1)*VSTEP/VMAC)**2)
IF(RED(I).LT.1.E-5)GO TO 12
11 CONTINUE
12 NPROF=I
RED(1)=RED(1)/2.
SUM=0.
DO 13 I=1,NPROF
13 SUM=SUM+RED(I)
SUM=SUM*2.
DO 14 I=1,NPROF
RED(I)=RED(I)/SUM
14 BLUE(I)=RED(I)
GO TO 50
C
C GAUSSIAN INSTRUMENTAL PROFILE HALF WIDTH IN KM FWHM
20 DO 21 I=1,20000
RED(I)=EXP(-(FLOAT(I-1)*VSTEP/FWHM*.8325546D0*2.)**2)
IF(RED(I).LT.1.E-5)GO TO 22
21 CONTINUE
22 NPROF=I
RED(1)=RED(1)/2.
SUM=0.
DO 23 I=1,NPROF
23 SUM=SUM+RED(I)
SUM=SUM*2.
DO 24 I=1,NPROF
RED(I)=RED(I)/SUM
24 BLUE(I)=RED(I)
IF(X2.EQ.0.)GO TO 50
DO 25 I=1,20000
RED2(I)=EXP(-(FLOAT(I-1)*VSTEP/FWHM2*.8325546D0*2.)**2)
IF(RED2(I).LT.1.E-5)GO TO 26
25 CONTINUE
26 NPROF=I
RED2(1)=RED2(1)/2.
SUM=0.
DO 27 I=1,NPROF
27 SUM=SUM+RED2(I)
SUM=SUM*2.
DO 28 I=1,NPROF
RED2(I)=RED2(I)/SUM
28 BLUE2(I)=RED2(I)
GO TO 50
C
C SINX/X INSTRUMENTAL PROFILE HALF WIDTH IN KM FWHM
C APODIZED BY EXP(-0.06*X**2)
60 RED(1)=0.5
DO 61 I=2,20000
X=(FLOAT(I-1)*VSTEP/FWHM*2.*1.8954942D0)
RED(I)=SIN(X)/X*EXP(-0.06*X**2)
IF(ABS(RED(I))+ABS(RED(I-1)).LT.1.E-5)GO TO 62
61 CONTINUE
62 NPROF=I
SUM=0.
DO 63 I=1,NPROF
63 SUM=SUM+RED(I)
SUM=SUM*2.
DO 64 I=1,NPROF
RED(I)=RED(I)/SUM
64 BLUE(I)=RED(I)
IF(X2.GT.0)GO TO 50
RED2(1)=0.5
DO 65 I=2,20000
X=(FLOAT(I-1)*VSTEP/FWHM2*2.*1.8954942D0)
RED2(I)=SIN(X)/X*EXP(-0.06*X**2)
IF(ABS(RED2(I))+ABS(RED2(I-1)).LT.1.D-5)GO TO 66
65 CONTINUE
66 NPROF=I
SUM=0.
DO 67 I=1,NPROF
67 SUM=SUM+RED2(I)
SUM=SUM*2.
DO 68 I=1,NPROF
RED2(I)=RED2(I)/SUM
68 BLUE2(I)=RED2(I)
GO TO 50
C
C RECTANGULAR INSTRUMENTAL PROFILE HALF WIDTH IN KM FWHM
30 XRECT=FWHM/2./VSTEP
NRECT=XRECT+1.5
NPROF=NRECT
DO 31 I=1,NPROF
31 RED(I)=1.
RED(NPROF)=XRECT+1.5-FLOAT(NRECT)
RED(1)=RED(1)/2.
SUM=0.
DO 33 I=1,NPROF
33 SUM=SUM+RED(I)
SUM=SUM*2.
DO 34 I=1,NPROF
RED(I)=RED(I)/SUM
34 BLUE(I)=RED(I)
IF(X2.EQ.0.)GO TO 50
XRECT=FWHM2/2./VSTEP
NRECT=XRECT+1.5
NPROF=NRECT
DO 35 I=1,NPROF
35 RED2(I)=1.
RED2(NPROF)=XRECT+1.5-FLOAT(NRECT)
RED2(1)=RED2(1)/2.
SUM=0.
DO 36 I=1,NPROF
36 SUM=SUM+RED2(I)
SUM=SUM*2.
DO 37 I=1,NPROF
RED2(I)=RED2(I)/SUM
37 BLUE2(I)=RED2(I)
GO TO 50
C
C INSTRUMENTAL PROFILE TABULATED AT SPECTRUM POINT SPACING.
C RED AND BLUE WINGS BOTH START AT CENTRAL POINT.
C THE PROFILE SHOULD SUM TO 1.
40 NPROF=X1
READ(5,41)(RED(I),I=1,NPROF)
READ(5,41)(BLUE(I),I=1,NPROF)
41 FORMAT(10X,7F10.6)
RED(1)=RED(1)/2.
BLUE(1)=BLUE(1)/2.
IF(X2.LE.0.)GO TO 50
READ(5,41)(RED2(I),I=1,NPROF)
READ(5,41)(BLUE2(I),I=1,NPROF)
RED2(1)=RED2(1)/2.
BLUE2(1)=BLUE2(1)/2.
50 WRITE(6,51)(I,RED1(I),BLUE1(I),RED2(I),BLUE2(I),I=1,NPROF)
51 FORMAT(I5,4F10.6)
WRITE(22)TEFF,GLOG,TITLE,WBEGIN,RESOLU,NWL,IFSURF,NMU,XMU,NEDGE,
1WLEDGE
NH=(NWL+19999+19999)*NMU
DO 52 I=1,NH
52 H(I)=0.
WRITE(6,1117)
1117 FORMAT(1H1)
IF(NMU.EQ.1)GO TO 150
DO 57 IWL=1,NWL
READ(21)(QMU(I),I=1,NMU)
DO 56 IMU=1,NMU
Q=QMU(IMU)
IWL1000=(IWL+20000)*NMU+IMU
DO 53 I=1,NPROF
53 H(IWL1000-I*NMU)=H(IWL1000-I*NMU)+BLUE(I)*Q
IWL998=(IWL+19998)*NMU+IMU
DO 54 I=1,NPROF
54 H(IWL998+I*NMU)=H(IWL998+I*NMU)+RED(I)*Q
56 CONTINUE
57 CONTINUE
IF(X2.EQ.0.)GO TO 160
REWIND 21
READ(21)
DO 58 IWL=1,NWL
IWLNMU=(IWL+19999)*NMU
WT2=FLOAT(IWL-1)/FLOAT(NWL-1)
WT1=1.-WT2
DO 58 IMU=1,NMU
58 H(IWLNMU+IMU)=H(IWLNMU+IMU)*WT1
DO 257 IWL=1,NWL
READ(21)(QMU(I),I=1,NMU)
WT2=FLOAT(IWL-1)/FLOAT(NWL-1)
DO 256 IMU=1,NMU
Q=QMU(IMU)*WT2
IWL1000=(IWL+20000)*NMU+IMU
DO 253 I=1,NPROF
253 H(IWL1000-I*NMU)=H(IWL1000-I*NMU)+BLUE(I)*Q
IWL998=(IWL+19998)*NMU+IMU
DO 254 I=1,NPROF
254 H(IWL998+I*NMU)=H(IWL998+I*NMU)+RED(I)*Q
256 CONTINUE
257 CONTINUE
GO TO 160
150 DO 157 IWL=1,NWL
READ(21)QMU(1)
Q=QMU(1)
IWL1001=IWL+20001
DO 153 I=1,NPROF
153 H(IWL1001-I)=H(IWL1001-I)+BLUE(I)*Q
IWL999=IWL+19999
DO 154 I=1,NPROF
154 H(IWL999+I)=H(IWL999+I)+RED(I)*Q
157 CONTINUE
IF(X2.EQ.0.)GO TO 160
REWIND 21
READ(21)
DO 358 IWL=1,NWL
WT2=FLOAT(IWL-1)/FLOAT(NWL-1)
WT1=1.-WT2
358 H(IWL+20000)=H(IWL+20000)*WT1
DO 357 IWL=1,NWL
READ(21)QMU(1)
WT2=FLOAT(IWL-1)/FLOAT(NWL-1)
Q=QMU(1)*WT2
IWL1001=IWL+20001
DO 353 I=1,NPROF
353 H(IWL1001-I)=H(IWL1001-I)+BLUE(I)*Q
IWL999=IWL+19999
DO 354 I=1,NPROF
354 H(IWL999+I)=H(IWL999+I)+RED(I)*Q
357 CONTINUE
160 REWIND 21
READ(21)
DO 170 IWL=1,NWL
READ(21)(QMU(IMU),IMU=1,NMU2)
IWLNMU=(IWL+19999)*NMU
DO 162 IMU=1,NMU
162 QMU(IMU)=H(IWLNMU+IMU)
WRITE(22)(QMU(I),I=1,NMU2)
IF(IWL.GT.LINOUT)GO TO 170
WAVE=WBEGIN*RATIO**(IWL-1)
RESID=QMU(1)/QMU(NMU1)
IRESID=RESID*1000.+.5
IPLOT=RESID*100.+1.5
IPLOT=MAX0(1,MIN0(101,IPLOT))
APLOT(IPLOT)='X'
WRITE(6,2300)IWL,WAVE,IRESID,APLOT
2300 FORMAT(1H ,I5,F11.4,I7,101A1)
APLOT(IPLOT)=' '
170 CONTINUE
READ(21)NLINES
WRITE(22)NLINES
DO 200 I=1,NLINES
READ(21)LINDAT8,LINDAT4
WRITE(22)LINDAT8,LINDAT4
200 CONTINUE
CALL EXIT
END
|