aboutsummaryrefslogtreecommitdiff
path: root/synthe/rotate.for
blob: fee679fbc4eed011120e1079edeba51c42b218df (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
PROGRAM ROTATE
c     revised 4nov14  constants given D exponents
c     revised 18jan05
c     default radius is 100 pixels instead of 50
c     differential rotation put in using solar expression
c     VROT(LAT2)=(462-75*SIN(LAT)**2)-50*SIN(LAT)**4)*2*PI*RSUN/1.E9/1.E5 KM/S
c     VROT(0)= 2.020 km/s   equator
c     VROT(1)= 1.474 km/s   pole
c     VROT(LAT)/VROT(0) = (1-75./462.*SIN(LAT)**2)-50./462.*SIN(LAT)**4)
c     from Libbrecht, K.G. and Morrow, C.A. The solar rotation. pp. 479-500 in
c     The Solar Interior and Atmosphere, eds. A.N. Cox, W.C. Livingston, and
c     M. Matthews, Tucson: University of Arizona Press, 1991.
c     All input rotation velocities are equitorial.  Differential rotation
c     velocities are specified by making the velocity negative.
c     Thus 2 produces the approximate solar rotation, -2 produces the
c     approximate solar differential rotation, and -2.020
c     matches the solar differential rotation expression above.
c
      parameter (npiece=2000,npiece2=npiece*2,npiece3=npiece*3)
      COMMON /HROT/H(500),HROT(npiece3)
      COMMON /WT/MUNWT(10000),IVNWT(10000),WTNWT(10000)
      DIMENSION CONT(npiece2)
      DIMENSION WTMU(100)
      DIMENSION XMU100(100),INT100(102)
      EQUIVALENCE (INT100(101),FLUX),(INT100(102),CONTIN)
      DIMENSION R(25),INTEN(26),XX(26)
      REAL*8 TEFF,GLOG,TITLE(74),WBEGIN,RESOLU,XMU(20),WLEDGE(377)
      REAL*8 QMU(40),Q2(2)
      REAL*8 LINDAT8(14)
      REAL*4 LINDAT(28)
      REAL INT100
      REAL INTEN
C      REAL*8 WEND
      REAL*8 WEND,RATIO
      DIMENSION VROT(25)
      EQUIVALENCE (DUMMY,IDUMMY)
      CHARACTER*5 ROTNAME(25)
      DIMENSION APLOT(101)
      DATA APLOT/101*1H /
      DATA ROTNAME/'ROT1','ROT2','ROT3','ROT4','ROT5','ROT6','ROT7',
     1'ROT8','ROT9','ROT10','ROT11','ROT12','ROT13','ROT14','ROT15',
     2'ROT16','ROT17','ROT18','ROT19','ROT20','ROT21','ROT22',
     3'ROT23','ROT24','ROT25'/
      DO 7 I=1,100
    7 XMU100(I)=FLOAT(I)*.01-.005
      LINOUT=30000
      LINOUT=300
      READ(5,1001)NROT,NRADIUS,(VROT(IROT),IROT=1,NROT)
 1001 FORMAT(I5,I5/(8F10.1))
C     IF(NRADIUS.EQ.0)NRADIUS=50
      IF(NRADIUS.EQ.0)NRADIUS=100
      WRITE(6,1002)NROT,NRADIUS,(VROT(IROT),IROT=1,NROT)
 1002 FORMAT(18H1ROTATION          ,I3,I5,10F6.1/(10F6.1))
      REWIND 1
      READ(1)TEFF,GLOG,TITLE,WBEGIN,RESOLU,NWL,IFSURF,NMU,XMU,NEDGE,WLEDGE
C     IFSURF=3 FOR ROTATED SPECTRUM
      IFSURF=3
      WRITE(6,1010)TEFF,GLOG,TITLE
 1010 FORMAT(  5H TEFF,F7.0,7H   GRAV,F7.3/7H TITLE ,74A1)
      WRITE(6,1007)NMU,(XMU(IMU),IMU=1,NMU)
 1007 FORMAT(18H SURFACE INTENSITY,I3,10F6.3/10F6.3)
      RATIO=1.+1./RESOLU
      WEND=WBEGIN*RATIO**(NWL-1)
      VSTEP=299792.458D0/RESOLU
      WRITE(6,1005)WBEGIN,WEND,RESOLU,VSTEP
 1005 FORMAT(2F12.5,F12.1,F12.5)
      NMU2=NMU+NMU
C
      XX(1)=0.
      NM1=NMU+1
      DO 11 MU=1,NMU
      NN=NMU-MU+2
   11 XX(NN)=XMU(MU)
      CALL WTROT(0.,0.,0,NWT,WTMU,NRADIUS)
      WRITE(6,777)WTMU
  777 FORMAT(1P10E12.3)
      INTEN(1)=0.
      DO 19 IWL=1,NWL
      READ(1)(QMU(I),I=1,NMU2)
      FLUX=0.
      CONTIN=0.
      DO 13 MU=1,NMU
      NN=NMU-MU+2
   13 INTEN(NN)=QMU(MU+NMU)
      IDUMMY=MAP1(XX,INTEN,NM1,XMU100,INT100,100)
      DO 14 I=1,100
   14 CONTIN=CONTIN+INT100(I)*WTMU(I)
      DO 15 MU=1,NMU
      NN=NMU-MU+2
   15 INTEN(NN)=QMU(MU)
      IDUMMY=MAP1(XX,INTEN,NM1,XMU100,INT100,100)
      DO 16 I=1,100
   16 FLUX=FLUX+INT100(I)*WTMU(I)
      WRITE(19)INT100
   19 CONTINUE
      NMU=1
C
      DO 500 IROT=1,NROT
      OPEN(UNIT=9,NAME=ROTNAME(IROT),FORM='UNFORMATTED',STATUS='NEW')
      REWIND 19
      VEL=ABS(VROT(IROT))
      NV=VEL/VSTEP+1.5
      NAV=NV/5+1
      NAVWT=NAV
      ENDWT=0.
      IF(MOD(NAV,2).EQ.0)ENDWT=.5
      IF(MOD(NAV,2).EQ.0)NAV=NAV+1
      NAV100=500-NAV/2
      NAVNAV=NAV100+NAV-1
      WRITE(6,1011)VEL,NV
 1011 FORMAT(5H1VROT,F10.1,I5)
      write(6,778)NAV,NAV100,NAVNAV
  778 FORMAT(10I10)
      IF(VEL.EQ.0.)GO TO 50
      CALL WTROT(VEL,VSTEP,NV,NWT,WTMU,NRADIUS)
      WRITE(6,1013)NWT
 1013 FORMAT(4H NWT,I6)
      DO 29 IWL=1,npiece3
   29 HROT(IWL)=0.
C
      WRITE(6,1117)
 1117 FORMAT(1H1)
      WRITE(9)TEFF,GLOG,TITLE,WBEGIN,RESOLU,NWL,IFSURF,NMU,XMU,
     1NEDGE,WLEDGE,VEL,NV
      REWIND 1
      DO 40 IWL=npiece+1,NWL+npiece,npiece
      MAX=MIN0(npiece2,NWL+npiece2-IWL+1)
      DO 30 J=npiece+1,MAX
      KWL=IWL+J-npiece2-1
      READ(19)INT100
      CONT(J)=CONTIN
      DO 25 I=1,NWT
      MU=MUNWT(I)
      IV=IVNWT(I)
      W=WTNWT(I)*INT100(MU)
      HROT(J-IV)=HROT(J-IV)+W
   25 HROT(J+IV)=HROT(J+IV)+W
   30 CONTINUE
      IF(IWL.EQ.npiece+1)GO TO 37
      DO 33 J=1,npiece
      QH=-(H(J+NAV100)+H(J+NAVNAV))*ENDWT
      DO 330 K=NAV100,NAVNAV
  330 QH=QH+H(J+K)
      Q2(1)=QH/FLOAT(NAVWT)
      Q2(2)=CONT(J)
      WRITE(9)Q2
      JWL=IWL+J-npiece2-1
      IF(JWL.GT.LINOUT)GO TO 33
      WAVE=WBEGIN*RATIO**(JWL-1)
      RESID=Q2(1)/Q2(2)
      IRESID=RESID*1000.+.5
      IPLOT=RESID*100.+1.5
      IPLOT=MAX0(1,MIN0(101,IPLOT))
      APLOT(IPLOT)=1HX
      WRITE(6,2300)JWL,WAVE,IRESID,APLOT
 2300 FORMAT(1H ,I5,F11.4,I7,101A1)
      APLOT(IPLOT)=(1H )
   33 CONTINUE
   37 DO 34 J=1,npiece
   34 CONT(J)=CONT(J+npiece)
      DO 350 J=1,500
  350 H(J)=HROT(J+npiece-500)
      DO 35 J=1,npiece2
   35 HROT(J)=HROT(J+npiece)
      DO 36 J=npiece2+1,npiece3
   36 HROT(J)=0.
      IF(KWL.LT.NWL)GO TO 40
      MAX=MIN0(npiece,NWL+npiece-IWL+1)
      DO 38 J=1,MAX
      QH=-(H(J+NAV100)+H(J+NAVNAV))*ENDWT
      DO 380 K=NAV100,NAVNAV
  380 QH=QH+H(J+K)
      Q2(1)=QH/FLOAT(NAVWT)
      Q2(2)=CONT(J)
      WRITE(9)Q2
      JWL=IWL+J-npiece-1
      IF(JWL.GT.LINOUT)GO TO 38
      WAVE=WBEGIN*RATIO**(JWL-1)
      RESID=Q2(1)/Q2(2)
      IRESID=RESID*1000.+.5
      IPLOT=RESID*100.+1.5
      IPLOT=MAX0(1,MIN0(101,IPLOT))
      APLOT(IPLOT)=1HX
      WRITE(6,2300)JWL,WAVE,IRESID,APLOT
      APLOT(IPLOT)=(1H )
   38 CONTINUE
   40 CONTINUE
      GO TO 400
   50 WRITE(9)TEFF,GLOG,TITLE,WBEGIN,RESOLU,NWL,IFSURF,NMU,XMU,
     1NEDGE,WLEDGE,VEL,NV
      WRITE(6,1117)
      DO 55 IWL=1,NWL
      READ(19)INT100
      Q2(1)=FLUX
      Q2(2)=CONTIN
      WRITE(9)Q2
      IF(IWL.GT.LINOUT)GO TO 55
      WAVE=WBEGIN*RATIO**(IWL-1)
      RESID=FLUX/CONTIN
      IRESID=RESID*1000.+.5
      IPLOT=RESID*100.+1.5
      IPLOT=MAX0(1,MIN0(101,IPLOT))
      APLOT(IPLOT)=1HX
      WRITE(6,2300)IWL,WAVE,IRESID,APLOT
      APLOT(IPLOT)=(1H )
   55 CONTINUE
  400 REWIND 1
      READ(1)
      DO 42 I=1,NWL
   42 READ(1)
      READ(1)NLINES
      WRITE(9)NLINES
      DO 41 I=1,NLINES
      READ(1)LINDAT8,LINDAT
      WRITE(9)LINDAT8,LINDAT
   41 CONTINUE
  500 CLOSE(UNIT=9)
      CLOSE(UNIT=2,DISPOSE='DELETE')
      CALL EXIT
      END
      SUBROUTINE WTROT(VEL,VSTEP,NV,NWT,WTMU,NRAD)
      COMMON /WT/MUNWT(10000),IVNWT(10000),WTNWT(10000)
      DIMENSION WTMU(100)
      REAL*4 LAT
      DO 1 MU=1,100
    1 WTMU(MU)=0.
C     SYMMETRY ABOUT THE EQUATOR AND AXIS
C      NRAD=100
C      NRAD=50
      RADIUS=NRAD
C     CHOSEN TO YIELD HNU
      W=4./4./3.14159/RADIUS**2
C     CENTER
      CX=.5
      CY=.5
      N3=0
      DO 100 IX=1,NRAD
      DO 100 IY=1,NRAD
C     R IS THE PROJECTED RADIUS
      R=SQRT((IX-CX)**2+(IY-CY)**2)
      IF(R.GT.RADIUS)GO TO 100
      XMU=SQRT(RADIUS**2-R**2)/RADIUS
      MU=XMU*100.+.9999999
      IF(MU.EQ.0)GO TO 100
      WTMU(MU)=WTMU(MU)+W
      IF(VEL.EQ.0.)GO TO 100
C     RX IS THE RADIUS OF THE LATITUDE CIRCLE
      RX=SQRT(RADIUS**2-(IY-CY)**2)
C     VLAT IS THE VELOCITY AT THE LATITUDE
      VLAT=RX/RADIUS*ABS(VEL)
      IF(VEL.LT.0.)THEN
      LAT=ACOS(RX/RADIUS)
      VLAT=VLAT*(1.-75./462.*SIN(LAT)**2-50./462.*SIN(LAT)**4)
      ENDIF
C     VX IS THE PROJECTED VELOCITY
      VX=(IX-CX)/RX*VLAT
      IV=VX/VSTEP+.5
      IVMU=IV*1000+MU
      N3=N3+1
      MUNWT(N3)=IVMU
  100 CONTINUE
      IF(VEL.EQ.0.)RETURN
      CALL INTSORT(MUNWT,N3)
      ISAVE=-1
      NWT=0
C     POSITIVE AND NEGATIVE DOPPLER SHIFTS
      W=W*.5
      DO 300 I=1,N3
      IVMU=MUNWT(I)
      IF(IVMU.EQ.ISAVE)GO TO 310
      ISAVE=IVMU
      IV=IVMU/1000
      MU=IVMU-IV*1000
      NWT=NWT+1
      IF(NWT.GT.10000)STOP 'MORE THAN 10000 POINTS'
      MUNWT(NWT)=MU
      IVNWT(NWT)=IV
      WTNWT(NWT)=W
      GO TO 300
  310 WTNWT(NWT)=WTNWT(NWT)+W
  300 CONTINUE
      RETURN
      END
      FUNCTION MAP1(XOLD,FOLD,NOLD,XNEW,FNEW,NNEW)
      DIMENSION XOLD(1),FOLD(1),XNEW(1),FNEW(1)
      L=2
      LL=0
      DO 50 K=1,NNEW
   10 IF(XNEW(K).LT.XOLD(L))GO TO 20
      L=L+1
      IF(L.GT.NOLD)GO TO 30
      GO TO 10
   20 IF(L.EQ.LL)GO TO 50
      IF(L.EQ.2)GO TO 30
      IF(L.EQ.3)GO TO 30
      L1=L-1
      IF(L.GT.LL+1.OR.L.EQ.3)GO TO 21
      IF(L.GT.LL+1.OR.L.EQ.4)GO TO 21
      CBAC=CFOR
      BBAC=BFOR
      ABAC=AFOR
      IF(L.EQ.NOLD)GO TO 22
      GO TO 25
   21 L2=L-2
      D=(FOLD(L1)-FOLD(L2))/(XOLD(L1)-XOLD(L2))
      CBAC=FOLD(L)/((XOLD(L)-XOLD(L1))*(XOLD(L)-XOLD(L2)))+
     1(FOLD(L2)/(XOLD(L)-XOLD(L2))-FOLD(L1)/(XOLD(L)-XOLD(L1)))/
     2(XOLD(L1)-XOLD(L2))
      BBAC=D-(XOLD(L1)+XOLD(L2))*CBAC
      ABAC=FOLD(L2)-XOLD(L2)*D+XOLD(L1)*XOLD(L2)*CBAC
      IF(L.LT.NOLD)GO TO 25
   22 C=CBAC
      B=BBAC
      A=ABAC
      LL=L
      GO TO 50
   25 D=(FOLD(L)-FOLD(L1))/(XOLD(L)-XOLD(L1))
      CFOR=FOLD(L+1)/((XOLD(L+1)-XOLD(L))*(XOLD(L+1)-XOLD(L1)))+
     1(FOLD(L1)/(XOLD(L+1)-XOLD(L1))-FOLD(L)/(XOLD(L+1)-XOLD(L)))/
     2(XOLD(L)-XOLD(L1))
      BFOR=D-(XOLD(L)+XOLD(L1))*CFOR
      AFOR=FOLD(L1)-XOLD(L1)*D+XOLD(L)*XOLD(L1)*CFOR
      WT=0.
      IF(ABS(CFOR).NE.0.)WT=ABS(CFOR)/(ABS(CFOR)+ABS(CBAC))
      A=AFOR+WT*(ABAC-AFOR)
      B=BFOR+WT*(BBAC-BFOR)
      C=CFOR+WT*(CBAC-CFOR)
      LL=L
      GO TO 50
   30 IF(L.EQ.LL)GO TO 50
      L=AMIN0(NOLD,L)
      C=0.
      B=(FOLD(L)-FOLD(L-1))/(XOLD(L)-XOLD(L-1))
      A=FOLD(L)-XOLD(L)*B
      LL=L
   50 FNEW(K)=A+(B+C*XNEW(K))*XNEW(K)
      MAP1=LL-1
      RETURN
      END
      SUBROUTINE INTSORT(DATA,N)
      INTEGER X,Z,DATA(1)
      NTRY=0
      N1=2
   15 DO 1 J=N1,N
      Z=DATA(J)
      IF(J-2)1,2,3
    2 IF(Z-DATA(1))4,1,1
    4 DATA(2)=DATA(1)
      DATA(1)=Z
      GO TO 1
    3 K7=J-1
      IF(Z-DATA(K7))5,1,1
    5 LFST=1
      LAST=K7
    6 MID=(LFST+LAST)/2
      IF(Z-DATA(MID))7,8,9
    7 IF(MID-LAST)10,8,8
   10 LAST=MID
      GO TO 6
    8 NSTART=MID
      GO TO 11
    9 IF(LFST-MID)12,13,13
   12 LFST=MID
      GO TO 6
   13 NSTART=MID+1
   11 DO 14 I=NSTART,K7
      K9=J+NSTART-I
   14 DATA(K9)=DATA(K9-1)
      DATA(NSTART)=Z
    1 CONTINUE
      NTRY=NTRY+1
      DO 16 I=2,N
      IF(DATA(I)-DATA(I-1))17,16,16
   17 N1=I
      IF(NTRY-5)15,15,18
   16 CONTINUE
   18 RETURN
      END