1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
PROGRAM ROTATE
c revised 4nov14 constants given D exponents
c revised 18jan05
c default radius is 100 pixels instead of 50
c differential rotation put in using solar expression
c VROT(LAT2)=(462-75*SIN(LAT)**2)-50*SIN(LAT)**4)*2*PI*RSUN/1.E9/1.E5 KM/S
c VROT(0)= 2.020 km/s equator
c VROT(1)= 1.474 km/s pole
c VROT(LAT)/VROT(0) = (1-75./462.*SIN(LAT)**2)-50./462.*SIN(LAT)**4)
c from Libbrecht, K.G. and Morrow, C.A. The solar rotation. pp. 479-500 in
c The Solar Interior and Atmosphere, eds. A.N. Cox, W.C. Livingston, and
c M. Matthews, Tucson: University of Arizona Press, 1991.
c All input rotation velocities are equitorial. Differential rotation
c velocities are specified by making the velocity negative.
c Thus 2 produces the approximate solar rotation, -2 produces the
c approximate solar differential rotation, and -2.020
c matches the solar differential rotation expression above.
c
parameter (npiece=2000,npiece2=npiece*2,npiece3=npiece*3)
COMMON /HROT/H(500),HROT(npiece3)
COMMON /WT/MUNWT(10000),IVNWT(10000),WTNWT(10000)
DIMENSION CONT(npiece2)
DIMENSION WTMU(100)
DIMENSION XMU100(100),INT100(102)
EQUIVALENCE (INT100(101),FLUX),(INT100(102),CONTIN)
DIMENSION R(25),INTEN(26),XX(26)
REAL*8 TEFF,GLOG,TITLE(74),WBEGIN,RESOLU,XMU(20),WLEDGE(377)
REAL*8 QMU(40),Q2(2)
REAL*8 LINDAT8(14)
REAL*4 LINDAT(28)
REAL INT100
REAL INTEN
C REAL*8 WEND
REAL*8 WEND,RATIO
DIMENSION VROT(25)
EQUIVALENCE (DUMMY,IDUMMY)
CHARACTER*5 ROTNAME(25)
DIMENSION APLOT(101)
DATA APLOT/101*1H /
DATA ROTNAME/'ROT1','ROT2','ROT3','ROT4','ROT5','ROT6','ROT7',
1'ROT8','ROT9','ROT10','ROT11','ROT12','ROT13','ROT14','ROT15',
2'ROT16','ROT17','ROT18','ROT19','ROT20','ROT21','ROT22',
3'ROT23','ROT24','ROT25'/
DO 7 I=1,100
7 XMU100(I)=FLOAT(I)*.01-.005
LINOUT=30000
LINOUT=300
READ(5,1001)NROT,NRADIUS,(VROT(IROT),IROT=1,NROT)
1001 FORMAT(I5,I5/(8F10.1))
C IF(NRADIUS.EQ.0)NRADIUS=50
IF(NRADIUS.EQ.0)NRADIUS=100
WRITE(6,1002)NROT,NRADIUS,(VROT(IROT),IROT=1,NROT)
1002 FORMAT(18H1ROTATION ,I3,I5,10F6.1/(10F6.1))
REWIND 1
READ(1)TEFF,GLOG,TITLE,WBEGIN,RESOLU,NWL,IFSURF,NMU,XMU,NEDGE,WLEDGE
C IFSURF=3 FOR ROTATED SPECTRUM
IFSURF=3
WRITE(6,1010)TEFF,GLOG,TITLE
1010 FORMAT( 5H TEFF,F7.0,7H GRAV,F7.3/7H TITLE ,74A1)
WRITE(6,1007)NMU,(XMU(IMU),IMU=1,NMU)
1007 FORMAT(18H SURFACE INTENSITY,I3,10F6.3/10F6.3)
RATIO=1.+1./RESOLU
WEND=WBEGIN*RATIO**(NWL-1)
VSTEP=299792.458D0/RESOLU
WRITE(6,1005)WBEGIN,WEND,RESOLU,VSTEP
1005 FORMAT(2F12.5,F12.1,F12.5)
NMU2=NMU+NMU
C
XX(1)=0.
NM1=NMU+1
DO 11 MU=1,NMU
NN=NMU-MU+2
11 XX(NN)=XMU(MU)
CALL WTROT(0.,0.,0,NWT,WTMU,NRADIUS)
WRITE(6,777)WTMU
777 FORMAT(1P10E12.3)
INTEN(1)=0.
DO 19 IWL=1,NWL
READ(1)(QMU(I),I=1,NMU2)
FLUX=0.
CONTIN=0.
DO 13 MU=1,NMU
NN=NMU-MU+2
13 INTEN(NN)=QMU(MU+NMU)
IDUMMY=MAP1(XX,INTEN,NM1,XMU100,INT100,100)
DO 14 I=1,100
14 CONTIN=CONTIN+INT100(I)*WTMU(I)
DO 15 MU=1,NMU
NN=NMU-MU+2
15 INTEN(NN)=QMU(MU)
IDUMMY=MAP1(XX,INTEN,NM1,XMU100,INT100,100)
DO 16 I=1,100
16 FLUX=FLUX+INT100(I)*WTMU(I)
WRITE(19)INT100
19 CONTINUE
NMU=1
C
DO 500 IROT=1,NROT
OPEN(UNIT=9,NAME=ROTNAME(IROT),FORM='UNFORMATTED',STATUS='NEW')
REWIND 19
VEL=ABS(VROT(IROT))
NV=VEL/VSTEP+1.5
NAV=NV/5+1
NAVWT=NAV
ENDWT=0.
IF(MOD(NAV,2).EQ.0)ENDWT=.5
IF(MOD(NAV,2).EQ.0)NAV=NAV+1
NAV100=500-NAV/2
NAVNAV=NAV100+NAV-1
WRITE(6,1011)VEL,NV
1011 FORMAT(5H1VROT,F10.1,I5)
write(6,778)NAV,NAV100,NAVNAV
778 FORMAT(10I10)
IF(VEL.EQ.0.)GO TO 50
CALL WTROT(VEL,VSTEP,NV,NWT,WTMU,NRADIUS)
WRITE(6,1013)NWT
1013 FORMAT(4H NWT,I6)
DO 29 IWL=1,npiece3
29 HROT(IWL)=0.
C
WRITE(6,1117)
1117 FORMAT(1H1)
WRITE(9)TEFF,GLOG,TITLE,WBEGIN,RESOLU,NWL,IFSURF,NMU,XMU,
1NEDGE,WLEDGE,VEL,NV
REWIND 1
DO 40 IWL=npiece+1,NWL+npiece,npiece
MAX=MIN0(npiece2,NWL+npiece2-IWL+1)
DO 30 J=npiece+1,MAX
KWL=IWL+J-npiece2-1
READ(19)INT100
CONT(J)=CONTIN
DO 25 I=1,NWT
MU=MUNWT(I)
IV=IVNWT(I)
W=WTNWT(I)*INT100(MU)
HROT(J-IV)=HROT(J-IV)+W
25 HROT(J+IV)=HROT(J+IV)+W
30 CONTINUE
IF(IWL.EQ.npiece+1)GO TO 37
DO 33 J=1,npiece
QH=-(H(J+NAV100)+H(J+NAVNAV))*ENDWT
DO 330 K=NAV100,NAVNAV
330 QH=QH+H(J+K)
Q2(1)=QH/FLOAT(NAVWT)
Q2(2)=CONT(J)
WRITE(9)Q2
JWL=IWL+J-npiece2-1
IF(JWL.GT.LINOUT)GO TO 33
WAVE=WBEGIN*RATIO**(JWL-1)
RESID=Q2(1)/Q2(2)
IRESID=RESID*1000.+.5
IPLOT=RESID*100.+1.5
IPLOT=MAX0(1,MIN0(101,IPLOT))
APLOT(IPLOT)=1HX
WRITE(6,2300)JWL,WAVE,IRESID,APLOT
2300 FORMAT(1H ,I5,F11.4,I7,101A1)
APLOT(IPLOT)=(1H )
33 CONTINUE
37 DO 34 J=1,npiece
34 CONT(J)=CONT(J+npiece)
DO 350 J=1,500
350 H(J)=HROT(J+npiece-500)
DO 35 J=1,npiece2
35 HROT(J)=HROT(J+npiece)
DO 36 J=npiece2+1,npiece3
36 HROT(J)=0.
IF(KWL.LT.NWL)GO TO 40
MAX=MIN0(npiece,NWL+npiece-IWL+1)
DO 38 J=1,MAX
QH=-(H(J+NAV100)+H(J+NAVNAV))*ENDWT
DO 380 K=NAV100,NAVNAV
380 QH=QH+H(J+K)
Q2(1)=QH/FLOAT(NAVWT)
Q2(2)=CONT(J)
WRITE(9)Q2
JWL=IWL+J-npiece-1
IF(JWL.GT.LINOUT)GO TO 38
WAVE=WBEGIN*RATIO**(JWL-1)
RESID=Q2(1)/Q2(2)
IRESID=RESID*1000.+.5
IPLOT=RESID*100.+1.5
IPLOT=MAX0(1,MIN0(101,IPLOT))
APLOT(IPLOT)=1HX
WRITE(6,2300)JWL,WAVE,IRESID,APLOT
APLOT(IPLOT)=(1H )
38 CONTINUE
40 CONTINUE
GO TO 400
50 WRITE(9)TEFF,GLOG,TITLE,WBEGIN,RESOLU,NWL,IFSURF,NMU,XMU,
1NEDGE,WLEDGE,VEL,NV
WRITE(6,1117)
DO 55 IWL=1,NWL
READ(19)INT100
Q2(1)=FLUX
Q2(2)=CONTIN
WRITE(9)Q2
IF(IWL.GT.LINOUT)GO TO 55
WAVE=WBEGIN*RATIO**(IWL-1)
RESID=FLUX/CONTIN
IRESID=RESID*1000.+.5
IPLOT=RESID*100.+1.5
IPLOT=MAX0(1,MIN0(101,IPLOT))
APLOT(IPLOT)=1HX
WRITE(6,2300)IWL,WAVE,IRESID,APLOT
APLOT(IPLOT)=(1H )
55 CONTINUE
400 REWIND 1
READ(1)
DO 42 I=1,NWL
42 READ(1)
READ(1)NLINES
WRITE(9)NLINES
DO 41 I=1,NLINES
READ(1)LINDAT8,LINDAT
WRITE(9)LINDAT8,LINDAT
41 CONTINUE
500 CLOSE(UNIT=9)
CLOSE(UNIT=2,DISPOSE='DELETE')
CALL EXIT
END
SUBROUTINE WTROT(VEL,VSTEP,NV,NWT,WTMU,NRAD)
COMMON /WT/MUNWT(10000),IVNWT(10000),WTNWT(10000)
DIMENSION WTMU(100)
REAL*4 LAT
DO 1 MU=1,100
1 WTMU(MU)=0.
C SYMMETRY ABOUT THE EQUATOR AND AXIS
C NRAD=100
C NRAD=50
RADIUS=NRAD
C CHOSEN TO YIELD HNU
W=4./4./3.14159/RADIUS**2
C CENTER
CX=.5
CY=.5
N3=0
DO 100 IX=1,NRAD
DO 100 IY=1,NRAD
C R IS THE PROJECTED RADIUS
R=SQRT((IX-CX)**2+(IY-CY)**2)
IF(R.GT.RADIUS)GO TO 100
XMU=SQRT(RADIUS**2-R**2)/RADIUS
MU=XMU*100.+.9999999
IF(MU.EQ.0)GO TO 100
WTMU(MU)=WTMU(MU)+W
IF(VEL.EQ.0.)GO TO 100
C RX IS THE RADIUS OF THE LATITUDE CIRCLE
RX=SQRT(RADIUS**2-(IY-CY)**2)
C VLAT IS THE VELOCITY AT THE LATITUDE
VLAT=RX/RADIUS*ABS(VEL)
IF(VEL.LT.0.)THEN
LAT=ACOS(RX/RADIUS)
VLAT=VLAT*(1.-75./462.*SIN(LAT)**2-50./462.*SIN(LAT)**4)
ENDIF
C VX IS THE PROJECTED VELOCITY
VX=(IX-CX)/RX*VLAT
IV=VX/VSTEP+.5
IVMU=IV*1000+MU
N3=N3+1
MUNWT(N3)=IVMU
100 CONTINUE
IF(VEL.EQ.0.)RETURN
CALL INTSORT(MUNWT,N3)
ISAVE=-1
NWT=0
C POSITIVE AND NEGATIVE DOPPLER SHIFTS
W=W*.5
DO 300 I=1,N3
IVMU=MUNWT(I)
IF(IVMU.EQ.ISAVE)GO TO 310
ISAVE=IVMU
IV=IVMU/1000
MU=IVMU-IV*1000
NWT=NWT+1
IF(NWT.GT.10000)STOP 'MORE THAN 10000 POINTS'
MUNWT(NWT)=MU
IVNWT(NWT)=IV
WTNWT(NWT)=W
GO TO 300
310 WTNWT(NWT)=WTNWT(NWT)+W
300 CONTINUE
RETURN
END
FUNCTION MAP1(XOLD,FOLD,NOLD,XNEW,FNEW,NNEW)
DIMENSION XOLD(1),FOLD(1),XNEW(1),FNEW(1)
L=2
LL=0
DO 50 K=1,NNEW
10 IF(XNEW(K).LT.XOLD(L))GO TO 20
L=L+1
IF(L.GT.NOLD)GO TO 30
GO TO 10
20 IF(L.EQ.LL)GO TO 50
IF(L.EQ.2)GO TO 30
IF(L.EQ.3)GO TO 30
L1=L-1
IF(L.GT.LL+1.OR.L.EQ.3)GO TO 21
IF(L.GT.LL+1.OR.L.EQ.4)GO TO 21
CBAC=CFOR
BBAC=BFOR
ABAC=AFOR
IF(L.EQ.NOLD)GO TO 22
GO TO 25
21 L2=L-2
D=(FOLD(L1)-FOLD(L2))/(XOLD(L1)-XOLD(L2))
CBAC=FOLD(L)/((XOLD(L)-XOLD(L1))*(XOLD(L)-XOLD(L2)))+
1(FOLD(L2)/(XOLD(L)-XOLD(L2))-FOLD(L1)/(XOLD(L)-XOLD(L1)))/
2(XOLD(L1)-XOLD(L2))
BBAC=D-(XOLD(L1)+XOLD(L2))*CBAC
ABAC=FOLD(L2)-XOLD(L2)*D+XOLD(L1)*XOLD(L2)*CBAC
IF(L.LT.NOLD)GO TO 25
22 C=CBAC
B=BBAC
A=ABAC
LL=L
GO TO 50
25 D=(FOLD(L)-FOLD(L1))/(XOLD(L)-XOLD(L1))
CFOR=FOLD(L+1)/((XOLD(L+1)-XOLD(L))*(XOLD(L+1)-XOLD(L1)))+
1(FOLD(L1)/(XOLD(L+1)-XOLD(L1))-FOLD(L)/(XOLD(L+1)-XOLD(L)))/
2(XOLD(L)-XOLD(L1))
BFOR=D-(XOLD(L)+XOLD(L1))*CFOR
AFOR=FOLD(L1)-XOLD(L1)*D+XOLD(L)*XOLD(L1)*CFOR
WT=0.
IF(ABS(CFOR).NE.0.)WT=ABS(CFOR)/(ABS(CFOR)+ABS(CBAC))
A=AFOR+WT*(ABAC-AFOR)
B=BFOR+WT*(BBAC-BFOR)
C=CFOR+WT*(CBAC-CFOR)
LL=L
GO TO 50
30 IF(L.EQ.LL)GO TO 50
L=AMIN0(NOLD,L)
C=0.
B=(FOLD(L)-FOLD(L-1))/(XOLD(L)-XOLD(L-1))
A=FOLD(L)-XOLD(L)*B
LL=L
50 FNEW(K)=A+(B+C*XNEW(K))*XNEW(K)
MAP1=LL-1
RETURN
END
SUBROUTINE INTSORT(DATA,N)
INTEGER X,Z,DATA(1)
NTRY=0
N1=2
15 DO 1 J=N1,N
Z=DATA(J)
IF(J-2)1,2,3
2 IF(Z-DATA(1))4,1,1
4 DATA(2)=DATA(1)
DATA(1)=Z
GO TO 1
3 K7=J-1
IF(Z-DATA(K7))5,1,1
5 LFST=1
LAST=K7
6 MID=(LFST+LAST)/2
IF(Z-DATA(MID))7,8,9
7 IF(MID-LAST)10,8,8
10 LAST=MID
GO TO 6
8 NSTART=MID
GO TO 11
9 IF(LFST-MID)12,13,13
12 LFST=MID
GO TO 6
13 NSTART=MID+1
11 DO 14 I=NSTART,K7
K9=J+NSTART-I
14 DATA(K9)=DATA(K9-1)
DATA(NSTART)=Z
1 CONTINUE
NTRY=NTRY+1
DO 16 I=2,N
IF(DATA(I)-DATA(I-1))17,16,16
17 N1=I
IF(NTRY-5)15,15,18
16 CONTINUE
18 RETURN
END
|