aboutsummaryrefslogtreecommitdiff
path: root/Inmodel.f
blob: e4d9e5b3f61aa929799f9c2c1b7d2881ae6f13f3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

      subroutine inmodel 
c******************************************************************************
c     This subroutine reads in the model 
c****************************************************************************** 

      implicit real*8 (a-h,o-z) 
      include 'Atmos.com'
      include 'Linex.com'
      include 'Mol.com'
      include 'Quants.com'
      include 'Factor.com'
      include 'Dummy.com'
      include 'Pstuff.com'
      real*8 element(95), logepsilon(95)
      real*8 kaprefmass(100)
      real*8 bmol(110)
      integer nel(7)
      character list*80, list2*70
      integer append
      data (nel(i),i=1,7)/  1,  2,  6, 12, 13, 14, 26/


c*****Read in the key word to define the model type
      modelnum = modelnum + 1
      rewind nfmodel
      read (nfmodel,2001) modtype
      write (nf1out,1010) modtype
      if (modtype .eq. 'begn      ' .or.  modtype .eq. 'BEGN      ') 
     .   write (nf1out,1011)


c*****Read a comment line (usually describing the model)
      read (nfmodel,2002) moditle


c*****Read the number of depth points
      read (nfmodel,2002) list
      list2 = list(11:)
      read (list2,*) ntau
      if (ntau .gt. 100) then
         write (array,1012)
         call prinfo (10)
         stop
      endif


c*****EITHER: Read in a model from the output of the experimental new
c     MARCS code.  This modtype is called "NEWMARCS".  On each line 
c     the numbers are:
c     tau(5000), t, pe, pgas, rho,  model microtrubulent velocity,
c     and mean opacity (cm^2/gm) at the reference wavelength (5000A).
      if (modtype .eq. 'NEWMARCS  ') then
         read (nfmodel,*) wavref    
         do i=1,ntau
            read (nfmodel,*) tauref(i),t(i),ne(i),pgas(i),rho(i),
     .                         vturb(1),kaprefmass(i)
         enddo
c*****OR: Read in a model from the output of the on-line new
c     MARCS code.  This modtype is called "WEBMARCS".  On each line
c     the numbers are:
c     layer number (not needed), log{tau(Rosseland)} (not needed),
c     log{tau(5000)}, depth, t, pe, pgas, prad (not read in) and
c     pturb (not read in)
      elseif (modtype .eq. 'WEBMARCS') then
         read (nfmodel,*) wavref
         do i=1,ntau
            read (nfmodel,*) k, dummy1(k), tauref(i), dummy2(k), t(i),
     .                       ne(i), pgas(i)
         enddo
c*****OR: Read in a model from an alternative form of on-line new
c     MARCS code.  This modtype is called "WEB2MARC".  On each line
c     the numbers are:
c     atmospheric layer number (not needed), log{tau(5000)}, t, 
c     log(Pe), log(Pgas), rhox
      elseif (modtype .eq. 'WEB2MARC') then
         read (nfmodel,*) wavref
         do i=1,ntau
            read (nfmodel,*) k,tauref(i),t(i),ne(i),pgas(i),rhox(i)
         enddo
c     OR: Read in a model from the output of the ATLAS code.  This
c     modtype is called "KURUCZ".  On each line the numbers are:
c     rhox, t, pgas, ne, and Rosseland mean opacity (cm^2/gm), and
c     two numbers not used by MOOG.  
      elseif (modtype .eq. 'KURUCZ    ') then
         do i=1,ntau
            read (nfmodel,*) rhox(i),t(i),pgas(i),ne(i),kaprefmass(i)
         enddo
c     OR: Read in a model from the output of the NEXTGEN code.  This
c     modtype is called "NEXTGEN".  These models have tau scaled at a 
c     specific wavelength that is read in before the model. MOOG will 
c     need to generate the opacities internally.On each line the numbers 
c     are: tau, t, pgas, pe, density, mean molecular weight, two numbers
c     not used by MOOG, and Rosseland mean opacity (cm^2/gm).
      elseif (modtype .eq. 'NEXTGEN   ') then
         read (nfmodel,*) wavref
         do i=1,ntau
            read (nfmodel,*) tauref(i),t(i),pgas(i),ne(i), rho(i),  
     .                       molweight(i), x2, x3, kaprefmass(i)
         enddo
c     OR: Read in a model from the output of the MARCS code.  This modtype
c     type is called "BEGN".  On each line the numbers are:
c     tauross, t, log(pg), log(pe), mol weight, and kappaross.
      elseif (modtype .eq. 'BEGN      ') then
         do i=1,ntau
            read (nfmodel,*) tauref(i),t(i),pgas(i),ne(i),
     .                          molweight(i),  kaprefmass(i)
         enddo
c     OR: Read in a model generated from ATLAS, but without accompanying
c     opacities.  MOOG will need to generate the opacities internally,
c     using a reference wavelength that it reads in before the model.
      elseif (modtype .eq. 'KURTYPE') then
         read (nfmodel,*) wavref    
         do i=1,ntau
            read (nfmodel,*) rhox(i),t(i),pgas(i),ne(i)
         enddo
c     OR: Read in a model generated from ATLAS, with output generated
c     in Padova.  The columns are in somewhat different order than normal
      elseif (modtype .eq. 'KUR-PADOVA') then
         read (nfmodel,*) wavref
         do i=1,ntau
            read (nfmodel,*) tauref(i),t(i),kaprefmass(i),
     .                         ne(i),pgas(i),rho(i)
         enddo
c     OR: Read in a generic model that has a tau scale at a specific 
c     wavelength that is read in before the model.  
c     MOOG will need to generate the opacities internally.
      elseif (modtype .eq. 'GENERIC   ') then
         read (nfmodel,*) wavref    
         do i=1,ntau
            read (nfmodel,*) tauref(i),t(i),pgas(i),ne(i)
         enddo
c     OR: quit in utter confusion if those model types are not specified
      else
         write (*,1001)
         stop
      endif


c*****Compute other convenient forms of the temperatures
      do i=1,ntau
          theta(i) = 5040./t(i)
          tkev(i) = 8.6171d-5*t(i)
          tlog(i) = dlog(t(i))
      enddo


c*****Convert from logarithmic Pgas scales, if needed
      if (pgas(ntau)/pgas(1) .lt. 10.) then
         do i=1,ntau                                                    
            pgas(i) = 10.0**pgas(i)
         enddo
      endif


c*****Convert from logarithmic Ne scales, if needed
      if(ne(ntau)/ne(1) .lt. 20.) then
         do i=1,ntau                                                    
            ne(i) = 10.0**ne(i)
         enddo
      endif


c*****Convert from Pe to Ne, if needed
      if(ne(ntau) .lt. 1.0e7) then
         do i=1,ntau                                                    
            ne(i) = ne(i)/1.38054d-16/t(i)
         enddo
      endif


c*****compute the atomic partition functions
      do j=1,95
         elem(j) = dble(j)
         call partfn (elem(j),j)
      enddo


c*****Read the microturbulence (either a single value to apply to 
c     all layers, or a value for each of the ntau layers). 
c     Conversion to cm/sec from km/sec is done if needed
      read (nfmodel,2003) (vturb(i),i=1,6)
      if (vturb(2) .ne. 0.) then
         read (nfmodel,2003) (vturb(i),i=7,ntau) 
      else
         do i=2,ntau                                                    
            vturb(i) = vturb(1)
         enddo
      endif
      if (vturb(1) .lt. 100.) then
         write (moditle(55:62),1008) vturb(1)
         do i=1,ntau
            vturb(i) = 1.0e5*vturb(i)
         enddo
      else
         write (moditle(55:62),1008) vturb(1)/1.0e5
      endif


c*****Read in the abundance data, storing the original abundances in xabu
c*****The abundances not read in explicity are taken from the default
c*****solar ones contained in array xsolar.
      read (nfmodel,2002) list
      list2 = list(11:)
      read (list2,*) natoms,abscale
      write (moditle(63:73),1009) abscale
      if(natoms .ne. 0) 
     .         read (nfmodel,*) (element(i),logepsilon(i),i=1,natoms) 
      xhyd = 10.0**xsolar(1)
      xabund(1) = 1.0
      xabund(2) = 10.0**xsolar(2)/xhyd
      do i=3,95                                                      
         xabund(i) = 10.0**(xsolar(i)+abscale)/xhyd
         xabu(i) = xabund(i)
      enddo
      if (natoms .ne. 0) then
         do i=1,natoms                                                  
            xabund(idint(element(i))) = 10.0**logepsilon(i)/xhyd
            xabu(idint(element(i))) = 10.0**logepsilon(i)/xhyd
         enddo
      endif

c*****Compute the mean molecular weight, ignoring molecule formation
c     in this approximation (maybe make more general some day?)
      wtnum = 0.
      wtden = 0.
      do i=1,95
         wtnum = wtnum + xabund(i)*xam(i)
         wtden = wtden + xabund(i)
      enddo
      wtmol = wtnum/(xam(1)*wtden)
      nomolweight = 0
      if (modtype .eq. 'BEGN      ' .or. modtype .eq. 'NEXTGEN   ') then
         nomolweight = 1
      endif
      if (nomolweight .ne. 1) then
         do i=1,ntau
             molweight(i) = wtmol
         enddo
      endif

c*****Compute the density 
      if (modtype .ne. 'NEXTGEN   ') then
         do i=1,ntau                                                    
            rho(i) = pgas(i)*molweight(i)*1.6606d-24/(1.38054d-16*t(i))
         enddo
      endif


c*****Calculate the fictitious number density of hydrogen
c     Note:  ph = (-b1 + dsqrt(b1*b1 - 4.0*a1*c1))/(2.0*a1)
      iatom = 1
      call partfn (dble(iatom),iatom)
      do i=1,ntau    
         th = 5040.0/t(i)         
         ah2 = 10.0**(-(12.7422+(-5.1137+(0.1145-0.0091*th)*th)*th))
         a1 = (1.0+2.0*xabund(2))*ah2
         b1 = 1.0 + xabund(2)
         c1 = -pgas(i)         
         ph = (-b1/2.0/a1)+dsqrt((b1**2/(4.0*a1*a1))-(c1/a1))
         nhtot(i) = (ph+2.0*ph*ph*ah2)/(1.38054d-16*t(i))
      enddo


c*****Molecular equilibrium called here.
c     First, a default list of ions and molecules is considered. Then the 
c     user's list is read in. A check is performed to see if any of these 
c     species need to be added. If so, then they are appended to the 
c     default list. The molecular equilibrium routine is then called.
c     Certain species are important for continuous opacities and damping
c     calculations - these are read from the equilibrium solution and 
c     saved.


c*****Set up the default molecule list
      if (molset .eq. 0) then
         nmol = 30
      else
         nmol = 59
      endif
      if     (molset .eq. 0) then
         do i=1,110
            amol(i) = smallmollist(i)
         enddo
      elseif (molset .eq. 1) then
         do i=1,110
            amol(i) = largemollist(i)
         enddo
      else
         array = 'molset = 0 or 1 only; I quit!'
         call putasci (29,6)
         stop
      endif


c*****Read in the names of additional molecules to be used in 
c     molecular equilibrium if needed.
      read (nfmodel,2002,end=101) list
      list2 = list(11:)
      read (list2,*) moremol
      if (moremol .ne. 0) then
         read (nfmodel,*) (bmol(i),i=1,moremol)
         append = 1
         do k=1,moremol
            do l=1,nmol
               if (nint(bmol(k)) .eq. nint(amol(l))) 
     .         append = 0  
            enddo
            if (append .eq. 1) then 
               nmol = nmol + 1
               amol(nmol) = bmol(k)
            endif
            append = 1
         enddo  
      endif


c*****do the general molecular equilibrium
101   call eqlib


c*****SPECIAL NEEDS: for NEWMARCS models, to convert kaprefs to our units
      if (modtype .eq. 'NEWMARCS  ') then
         do i=1,ntau
            kapref(i) = kaprefmass(i)*rho(i)
         enddo
c     SPECIAL NEEDS: for KURUCZ models, to create the optical depth array,
c     and to convert kaprefs to our units
      elseif (modtype .eq. 'KURUCZ    ') then
         first = rhox(1)*kaprefmass(1)
         tottau = rinteg(rhox,kaprefmass,tauref,ntau,first) 
         tauref(1) = first
         do i=2,ntau
            tauref(i) = tauref(i-1) + tauref(i)
         enddo
         do i=1,ntau
            kapref(i) = kaprefmass(i)*rho(i)
         enddo
c     SPECIAL NEEDS: for NEXTGEN models, to convert kaprefs to our units
      elseif (modtype .eq. 'NEXTGEN   ') then
         do i=1,ntau                                                    
            kapref(i) = kaprefmass(i)*rho(i)
         enddo
c     SPECIAL NEEDS: for BEGN models, to convert kaprefs to our units
      elseif (modtype .eq. 'BEGN      ') then
         do i=1,ntau                                                    
            kapref(i) = kaprefmass(i)*rho(i)
         enddo
c     SPECIAL NEEDS: for KURTYPE models, to create internal kaprefs,
c     and to compute taurefs from the kaprefs converted to mass units
      elseif (modtype .eq. 'KURTYPE   ') then
         call opacit (1,wavref)
         do i=1,ntau                                                    
            kaprefmass(i) = kapref(i)/rho(i)
         enddo
         first = rhox(1)*kaprefmass(1)
         tottau = rinteg(rhox,kaprefmass,tauref,ntau,first) 
         tauref(1) = first
         do i=2,ntau
            tauref(i) = tauref(i-1) + tauref(i)
         enddo
c     SPECIAL NEEDS: for NEWMARCS models, to convert kaprefs to our units
      elseif (modtype .eq. 'KUR-PADOVA') then
         do i=1,ntau
            kapref(i) = kaprefmass(i)*rho(i)
         enddo
c     SPECIAL NEEDS: for generic models, to create internal kaprefs,
      elseif (modtype .eq. 'GENERIC   ' .or.
     .        modtype .eq. 'WEBMARCS  ' .or.
     .        modtype .eq. 'WEB2MARC  ') then
         call opacit (1,wavref)
      endif


c*****Convert from logarithmic optical depth scales, or vice versa.
c     xref will contain the log of the tauref
      if(tauref(1) .lt. 0.) then
         do i=1,ntau                                                    
            xref(i) = tauref(i)
            tauref(i) = 10.0**xref(i)
         enddo
      else
         do i=1,ntau                                                    
            xref(i) = dlog10(tauref(i))
         enddo
      endif


c*****Write information to output files
      if (modprintopt .lt. 1) return
      write (nf1out,1002) moditle
      do i=1,ntau
         dummy1(i) = dlog10(pgas(i))
         dummy2(i) = dlog10(ne(i)*1.38054d-16*t(i))
      enddo
      write (nf1out,1003) wavref,(i,xref(i),tauref(i),t(i),dummy1(i),
     .                    pgas(i),dummy2(i),ne(i),vturb(i),i=1,ntau)
      write (nf1out,1004)
      do i=1,95
         dummy1(i) = dlog10(xabund(i)) + 12.0
      enddo
      write (nf1out,1005) (names(i),i,dummy1(i),i=1,95)
      write (nf1out,1006) modprintopt, molopt, linprintopt, fluxintopt
      write (nf1out,1007) (kapref(i),i=1,ntau)
      return


c*****format statements
2001  format (a10)
2002  format (a80)
2003  format (6d13.0)
1001  format('permitted model types are:'/'KURUCZ, BEGN, ',
     .       'KURTYPE, KUR-PADOVA, NEWMARCS, WEBMARCS, NEXTGEN, ',
     .       'WEB2MARC, or GENERIC'/ 'MOOG quits!')
1002  format (/'MODEL ATMOSPHERE HEADER:'/a80/)
1003  format ('INPUT ATMOSPHERE QUANTITIES', 10x,
     .        '(reference wavelength =',f10.2,')'/3x, 'i', 2x, 'xref',
     .        3x, 'tauref', 7x, 'T', 6x, 'logPg', 4x, 'Pgas',
     .        6x, 'logPe', 5x, 'Ne', 9x, 'Vturb'/
     .        (i4, 0pf6.2, 1pd11.4, 0pf9.1, f8.3, 1pd11.4, 0pf8.3,
     .        1pd11.4, d11.2))
1004  format (/'INPUT ABUNDANCES: (log10 number densities, log H=12)'/
     .       '      Default solar abundances: Asplund et al. 2009')
1005  format (5(3x,a2, '(',i2,')=', f5.2))
1006  format (/'OPTIONS: atmosphere = ', i1, 5x, 'molecules  = ', i1/
     .        '         lines      = ', i1, 5x, 'flux/int   = ', i1)
1007  format (/'KAPREF ARRAY:'/(6(1pd12.4)))
1008  format ('vt=', f5.2)
1009  format (' M/H=', f5.2)
1010  format (13('-'),'MOOG OUTPUT FILE', 10('-'),
     .        '(MOOG version NOV 2019)', 13('-')//
     .        'THE MODEL TYPE: ', a10)
1011  format ('   The Rosseland opacities and optical depths have ',
     .        'been read in')
1012  format ('HOUSTON, WE HAVE MORE THAN 100 DEPTH POINTS! I QUIT!')


      end