aboutsummaryrefslogtreecommitdiff
path: root/OpacHydrogen.f
blob: a193fb9aac9d30c9ac78c313ce6fe5ab71469c7e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
c******************************************************************************
c  The subroutines needed to calculate the H I b-f, H I f-f, H- b-f, and
c  H- f-f opacities are in this file.  These are from ATLAS9.
c******************************************************************************





      subroutine opacH1
c******************************************************************************
c  This routine computes the H- bound-free and free-free opacities.
c  It returns the cross-section times the number density of H- particles.
c******************************************************************************

      implicit real*8 (a-h,o-z)
      include 'Atmos.com' 
      include 'Kappa.com'
      include 'Mol.com'
      real*8 cont(8), bolt(100,8), exlim(100), freet(100), boltex(100)
      save
      data modcount/0/

c  set up some data upon first entrance with a new model atmosphere
      if (modelnum .ne. modcount) then
         modcount = modelnum
         do i=1,ntau
            do n=1,8
               xn2 = dfloat(n*n)
               bolt(i,n) = dexp(-13.595*(1.-1./xn2)/tkev(i))*2.*
     .                     xn2*numdens(1,1,i)/u(1,1,i)
            enddo
            freet(i) = ne(i)*numdens(1,2,i)/u(1,2,i)/dsqrt(t(i))
            xr = numdens(1,1,i)/u(1,1,i)*(2./2./13.595)*tkev(i)
            boltex(i) = dexp(-13.427/tkev(i))*xr
            exlim(i) = dexp(-13.595/tkev(i))*xr
         enddo
      endif

      do n=1,8
         cont(n) = coulx(n,freq,1.d0)
      enddo

      freq3 = freq**3
      cfree = 3.6919d8/freq3
      c = 2.815d29/freq3
      do i=1,ntau
         ex = boltex(i)
         if (freq .lt. 4.05933d13) ex = exlim(i)/evhkt(i)
         h = (cont(7)*bolt(i,7) + cont8*bolt(i,8) + 
     .       (ex - exlim(i))*c + 
     .       coulff(1,tlog(i),freq)*freet(i)*cfree)*(1.-evhkt(i))
         do n=1,6
            h = h + cont(n)*bolt(i,n)*(1.-evhkt(i))
         enddo
         aH1(i) = h
      enddo

      return
      end






      subroutine opacHminus
c******************************************************************************
c  This routine computes the H- bound-free and free-free opacities.
c******************************************************************************

      implicit real*8 (a-h,o-z)
      include 'Atmos.com' 
      include 'Kappa.com'
      real*8 wbf(85), bf(85), fflog(22,11), ff(11,22)
      real*8 ffbeg(11,11), ffend(11,11), fftt(11), wfflog(22)
      real*8 fftheta(100), thetaff(11), wavek(22)
      real*8 xhmin(100)
      equivalence (ff(1,1),ffbeg(1,1)), (ff(1,12),ffend(1,1))
      save
c  From Mathisen (1984), after Wishart (1979) and Broad & Reinhardt (1976) 
      data wbf/  18.00,  19.60,  21.40,  23.60,  26.40,  29.80,  34.30,
     .   40.40,  49.10,  62.60, 111.30, 112.10, 112.67, 112.95, 113.05,
     .  113.10, 113.20, 113.23, 113.50, 114.40, 121.00, 139.00, 164.00,
     .  175.00, 200.00, 225.00, 250.00, 275.00, 300.00, 325.00, 350.00,
     .  375.00, 400.00, 425.00, 450.00, 475.00, 500.00, 525.00, 550.00,
     .  575.00, 600.00, 625.00, 650.00, 675.00, 700.00, 725.00, 750.00,
     .  775.00, 800.00, 825.00, 850.00, 875.00, 900.00, 925.00, 950.00,
     .  975.00,1000.00,1025.00,1050.00,1075.00,1100.00,1125.00,1150.00,
     . 1175.00,1200.00,1225.00,1250.00,1275.00,1300.00,1325.00,1350.00,
     . 1375.00,1400.00,1425.00,1450.00,1475.00,1500.00,1525.00,1550.00,
     . 1575.00,1600.00,1610.00,1620.00,1630.00,1643.91/
      data bf/   0.067,  0.088,  0.117,  0.155,  0.206,  0.283,  0.414,
     .   0.703,   1.24,   2.33,  11.60,  13.90,  24.30,  66.70,  95.00,
     .   56.60,  20.00,  14.60,   8.50,   7.10,   5.43,   5.91,   7.29,
     .   7.918,  9.453,  11.08,  12.75,  14.46,  16.19,  17.92,  19.65,
     .   21.35,  23.02,  24.65,  26.24,  27.77,  29.23,  30.62,  31.94,
     .   33.17,  34.32,  35.37,  36.32,  37.17,  37.91,  38.54,  39.07,
     .   39.48,  39.77,  39.95,  40.01,  39.95,  39.77,  39.48,  39.06,
     .   38.53,  37.89,  37.13,  36.25,  35.28,  34.19,  33.01,  31.72,
     .   30.34,  28.87,  27.33,  25.71,  24.02,  22.26,  20.46,  18.62,
     .   16.74,  14.85,  12.95,  11.07,  9.211,  7.407,  5.677,  4.052,
     .   2.575,  1.302, 0.8697, 0.4974, 0.1989,    0. /
C  Bell and Berrington (1987, J.Phys.B, 20, 801-806)
      data wavek/ .50,.40,.35,.30,.25,.20,.18,.16,.14,.12,.10,.09,.08,
     .            .07,.06,.05,.04,.03,.02,.01,.008,.006/
      data thetaff/
     .  0.5,  0.6, 0.8,  1.0,  1.2,  1.4,  1.6,  1.8,  2.0,  2.8,  3.6/
      data ffbeg/
     ..0178,.0222,.0308,.0402,.0498,.0596,.0695,.0795,.0896, .131, .172,   1823
     ..0228,.0280,.0388,.0499,.0614,.0732,.0851,.0972, .110, .160, .211,   2278
     ..0277,.0342,.0476,.0615,.0760,.0908, .105, .121, .136, .199, .262,   2604
     ..0364,.0447,.0616,.0789,.0966, .114, .132, .150, .169, .243, .318,   3038
     ..0520,.0633,.0859, .108, .131, .154, .178, .201, .225, .321, .418,   3645
     ..0791,.0959, .129, .161, .194, .227, .260, .293, .327, .463, .602,   4557
     ..0965, .117, .157, .195, .234, .272, .311, .351, .390, .549, .711,   5063
     . .121, .146, .195, .241, .288, .334, .381, .428, .475, .667, .861,   5696
     . .154, .188, .249, .309, .367, .424, .482, .539, .597, .830, 1.07,   6510
     . .208, .250, .332, .409, .484, .557, .630, .702, .774, 1.06, 1.36,   7595
     . .293, .354, .468, .576, .677, .777, .874, .969, 1.06, 1.45, 1.83/   9113
      data ffend/
     . .358, .432, .572, .702, .825, .943, 1.06, 1.17, 1.28, 1.73, 2.17,  10126
     . .448, .539, .711, .871, 1.02, 1.16, 1.29, 1.43, 1.57, 2.09, 2.60,  11392
     . .579, .699, .924, 1.13, 1.33, 1.51, 1.69, 1.86, 2.02, 2.67, 3.31,  13019
     . .781, .940, 1.24, 1.52, 1.78, 2.02, 2.26, 2.48, 2.69, 3.52, 4.31,  15189
     . 1.11, 1.34, 1.77, 2.17, 2.53, 2.87, 3.20, 3.51, 3.80, 4.92, 5.97,  18227
     . 1.73, 2.08, 2.74, 3.37, 3.90, 4.50, 5.01, 5.50, 5.95, 7.59, 9.06,  22784
     . 3.04, 3.65, 4.80, 5.86, 6.86, 7.79, 8.67, 9.50, 10.3, 13.2, 15.6,  30378
     . 6.79, 8.16, 10.7, 13.1, 15.3, 17.4, 19.4, 21.2, 23.0, 29.5, 35.0,  45567
     . 27.0, 32.4, 42.6, 51.9, 60.7, 68.9, 76.8, 84.2, 91.4, 117., 140.,  91134
     . 42.3, 50.6, 66.4, 80.8, 94.5, 107., 120., 131., 142., 183., 219., 113918
     . 75.1, 90.0, 118., 144., 168., 191., 212., 234., 253., 325., 388./ 151890
      data (xhmin(i),i=1,100)/100*0.0/
      data modcount,istart/ 0,0/
         
c  fill some arrays once and for all
      if (istart .eq. 0) then
         istart = 1
c  91.134 number taken from Bell & Berrington
         do iwave=1,22
            wfflog(iwave) = dlog(91.134d0/wavek(iwave))
            do itheta=1,11
               fflog(iwave,itheta) = dlog(ff(itheta,iwave)*1.d-26)
            enddo
         enddo
      endif

c  initialize some quantities for each new model atmosphere
c  .754209 Hotop & Lineberger (1985, J. Phys. Chem. Ref. Data, 14,731-752)
      if (modelnum .ne. modcount) then
         modcount = modelnum
         do i=1,ntau
            xhmin(i) = dexp(.754209/tkev(i))/(2.*2.4148d15*t(i)**1.5)*
     .                 numdens(1,1,i)/u(1,1,i)*ne(i)
         enddo
      endif

c  main opacity computation yielding "aHminus"
      wave = 2.99792458d17/freq
      wavelog = dlog(wave)
      do itheta=1,11
         nnnn = 22
         call linter (wfflog,fflog(1,itheta),nnnn,wavelog,fftlog,1)
         fftt(itheta) = dexp(fftlog)/thetaff(itheta)*5040.*1.380658E-16
      enddo
      hminbf = 0.
      nnnn = 85
      if (freq  .gt.  1.82365d14) 
     .              maxwave = map1(wbf,bf,nnnn,wave,hminbf,1) 
      do i=1,ntau
         nnnn = 11
         call linter (thetaff,fftt,nnnn,theta(i),fftheta(i),1)
         hminff = fftheta(i)*numdens(1,1,i)/u(1,1,i)*2.*ne(i)
         h = hminbf*1.d-18*(1.-evhkt(i))*xhmin(i)
         aHminus(i) = h + hminff
      enddo

      return
      end





      subroutine linter (xold,yold,nold,xnew,ynew,nnew)
c******************************************************************************
c  this is a linear interpolation scheme.  The arrays "xold" and "xnew" 
c  should be increasing order.
c******************************************************************************

      implicit real*8 (a-h,o-z)
      real*8 xold(*), yold(*), xnew(*), ynew(*)
        
      iold = 2
      do inew=1,nnew
1       if (xnew(inew).lt.xold(iold) .or. iold.eq.nold) then
           ynew(inew) = yold(iold-1) + (yold(iold)-yold(iold-1))/
     .              (xold(iold)-xold(iold-1))*(xnew(inew)-xold(iold-1))
           return
        else
           iold = iold + 1
           go to 1
        endif
      enddo
      
      end






      integer function map1 (xold,fold,nold,xnew,fnew,nnew)
c******************************************************************************
c  This is an interpolation scheme that is copied blindly from ATLAS. 
c  I decided that it would be too dangerous to re-write this one.
c******************************************************************************

      implicit real*8 (a-h,o-z)
      real*8 xold(*), fold(*), xnew(*), fnew(*)

      l = 2
      ll = 0
      do 50 k=1,nnew
10       if(xnew(k) .lt. xold(l)) go to 20
         l = l + 1
         if (l .gt. nold) go to 30
         go to 10
20       if (l .eq. ll) go to 50
         if (l .eq. 2) go to 30
         if (l .eq. 3) go to 30
         l1 = l - 1
         if (l.gt.ll+1 .or. l.eq.3) go to 21
         if (l.gt.ll+1 .or. l.eq.4) go to 21
         cbac = cfor
         bbac = bfor
         abac = afor
         if (l .eq. nold) go to 22
         go to 25
21       l2 = l - 2
         d = (fold(l1)-fold(l2))/(xold(l1)-xold(l2))
         cbac = fold(l)/((xold(l)-xold(l1))*(xold(l)-xold(l2)))+
     .      (fold(l2)/(xold(l)-xold(l2))-fold(l1)/(xold(l)-xold(l1)))/
     .      (xold(l1)-xold(l2))
         bbac = d - (xold(l1)+xold(l2))*cbac
         abac = fold(l2) - xold(l2)*d + xold(l1)*xold(l2)*cbac
         if (l .lt. nold) go to 25
22       c = cbac
         b = bbac
         a = abac
         ll = l
         go to 50
25       d = (fold(l)-fold(l1))/(xold(l)-xold(l1))
         cfor =  fold(l+1)/((xold(l+1)-xold(l))*(xold(l+1)-xold(l1)))+
     .      (fold(l1)/(xold(l+1)-xold(l1))-fold(l)/(xold(l+1)-xold(l)))/
     .      (xold(L)-xold(l1))
         bfor = d - (xold(l)+xold(l1))*cfor
         afor = fold(l1) - xold(l1)*d + xold(l)*xold(l1)*cfor
         wt = 0.
         if (dabs(cfor) .ne. 0.) wt = dabs(cfor)/(dabs(cfor)+dabs(cbac))
         a = afor + wt*(abac-afor)
         b = bfor + wt*(bbac-bfor)
         c = cfor + wt*(cbac-cfor)
         ll = l
         go to 50
30       if (l .eq. ll) go to 50
         l = min0(nold,l)
         c = 0.
         b = (fold(l)-fold(l-1))/(xold(l)-xold(l-1))
         a = fold(l) - xold(l)*b
         ll = l
50       fnew(k)= a + (b + c*xnew(k))*xnew(k)

         map1 = ll - 1 
         return
         end