1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
|
# -*- coding: utf-8 -*-
# Copyright (C) 2011 Association of Universities for Research in
# Astronomy (AURA)
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above
# copyright notice, this list of conditions and the following
# disclaimer.
#
# 2. Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials
# provided with the distribution.
#
# 3. The name of AURA and its representatives may not be used to
# endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY AURA ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL AURA BE LIABLE FOR ANY DIRECT,
# INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
# OF THE POSSIBILITY OF SUCH DAMAGE.
"""
This module provides support for working with footprints
on the sky. Primary use case would use the following
generalized steps:
#. Initialize `SkyLine` objects for each input image.
This object would be the union of all the input
image's individual chips WCS footprints.
#. Determine overlap between all images. The
determination would employ a recursive operation
to return the extended list of all overlap values
computed as [img1 vs [img2,img3,...,imgN],img2 vs
[img3,...,imgN],...]
#. Select the pair with the largest overlap, or the
pair which produces the largest overlap with the
first input image. This defines the initial
reference `SkyLine` object.
#. Perform some operation on the 2 images: for example,
match sky in intersecting regions, or aligning
second image with the first (reference) image.
#. Update the second image, either apply the sky value
or correct the WCS, then generate a new `SkyLine`
object for that image.
#. Create a new reference `SkyLine` object as the union
of the initial reference object and the newly
updated `SkyLine` object.
#. Repeat Steps 2-6 for all remaining input images.
This process will work reasonably fast as most operations
are performed using the `SkyLine` objects and WCS information
solely, not image data itself.
"""
from __future__ import division, print_function, absolute_import
# STDLIB
from copy import copy, deepcopy
# THIRD-PARTY
import pyfits
from stwcs import wcsutil
from stwcs.distortion.utils import output_wcs
# LOCAL
from .polygon import SphericalPolygon
# DEBUG
SKYLINE_DEBUG = True
__all__ = ['SkyLineMember', 'SkyLine']
__version__ = '0.3a'
__vdate__ = '10-Jul-2012'
class SkyLineMember(object):
"""
Container for `SkyLine` members with these attributes:
* `fname`: Image name (with path if given)
* `ext`: Extension read
* `wcs`: `HSTWCS` object the data data
* `polygon`: `~sphere.polygon.SphericalPolygon` object of the data
"""
def __init__(self, fname, ext):
"""
Parameters
----------
fname : str
FITS image.
ext : int
Image extension.
"""
self._fname = fname
self._ext = ext
self._wcs = wcsutil.HSTWCS(fname, ext=ext)
self._polygon = SphericalPolygon.from_wcs(self.wcs)
def __repr__(self):
return '%s(%r, %r, %r, %r)' % (self.__class__.__name__, self.fname,
self.ext, self.wcs, self.polygon)
@property
def fname(self):
return self._fname
@property
def ext(self):
return self._ext
@property
def wcs(self):
return self._wcs
@property
def polygon(self):
return self._polygon
class SkyLine(object):
"""
Manage outlines on the sky.
Each `SkyLine` has a list of `~SkyLine.members` and
a composite `~SkyLine.polygon` with all the
functionalities of `~sphere.polygon.SphericalPolygon`.
"""
def __init__(self, fname, extname='SCI'):
"""
Parameters
----------
fname : str
FITS image. `None` to create empty `SkyLine`.
extname : str
EXTNAME to use. SCI is recommended for normal
HST images. PRIMARY if image is single ext.
"""
extname = extname.upper()
# Convert SCI data to SkyLineMember
if fname is not None:
with pyfits.open(fname) as pf:
self.members = [SkyLineMember(fname, i)
for i,ext in enumerate(pf)
if extname in ext.name.upper()]
else:
self.members = []
# Put mosaic of all the chips in SkyLine
if len(self.members) > 0:
self.polygon = SphericalPolygon.multi_union(
[m.polygon for m in self.members])
else:
self.polygon = SphericalPolygon([])
def __getattr__(self, what):
"""Control attribute access to `~sphere.polygon.SphericalPolygon`."""
if what in ('from_radec', 'from_cone', 'from_wcs',
'multi_union', 'multi_intersection',
'_find_new_inside',):
raise AttributeError('\'%s\' object has no attribute \'%s\'' %
(self.__class__.__name__, what))
else:
return getattr(self.polygon, what)
def __copy__(self):
return deepcopy(self)
def __repr__(self):
return '%s(%r, %r)' % (self.__class__.__name__,
self.polygon, self.members)
@property
def polygon(self):
"""
`~sphere.polygon.SphericalPolygon` portion of `SkyLine`
that contains the composite skyline from `members`
belonging to *self*.
"""
return self._polygon
@polygon.setter
def polygon(self, value):
assert isinstance(value, SphericalPolygon)
self._polygon = copy(value) # Deep copy
@property
def members(self):
"""
List of `SkyLineMember` objects that belong to *self*.
Duplicate members are discarded. Members are kept in
the order of their additions to *self*.
"""
return self._members
@members.setter
def members(self, values):
self._members = []
# Not using set to preserve order
for v in values:
# Report corrupted members list instead of skipping
assert isinstance(v, SkyLineMember)
if v not in self._members:
self._members.append(v)
def to_wcs(self):
"""
Combine `HSTWCS` objects from all `members` and return
a new `HSTWCS` object. If no `members`, return `None`.
.. warning:: This cannot return WCS of intersection.
"""
wcs = None
if len(self.members) > 0:
wcs = output_wcs([m.wcs for m in self.members])
return wcs
def _rough_id(self):
"""Filename of first member."""
if len(self.members) > 0:
return self.members[0].fname
else:
return None
def _draw_members(self, map, **kwargs):
"""
Draw individual members. Useful for debugging.
Parameters
----------
map : Basemap axes object
**kwargs : Any plot arguments to pass to basemap
"""
for m in self.members:
m.polygon.draw(map, **kwargs)
def _find_members(self, given_members):
"""
Find `SkyLineMember` in *given_members* that is in
*self*. This is used for intersection.
Parameters
----------
self : obj
`SkyLine` instance.
given_members : list
List of `SkyLineMember` to consider.
Returns
-------
new_members : list
List of `SkyLineMember` belonging to *self*.
"""
if len(self.points) > 0:
out_mem = [m for m in given_members if
self.intersects_poly(m.polygon)]
else:
out_mem = []
return out_mem
def add_image(self, other):
"""
Return a new `SkyLine` that is the union of *self*
and *other*.
.. warning:: `SkyLine.union` only returns `polygon`
without `members`.
Parameters
----------
other : `SkyLine` object
Examples
--------
>>> s1 = SkyLine('image1.fits')
>>> s2 = SkyLine('image2.fits')
>>> s3 = s1.add_image(s2)
"""
newcls = self.__class__(None)
newcls.polygon = self.union(other)
newcls.members = self.members + other.members
return newcls
def find_intersection(self, other):
"""
Return a new `SkyLine` that is the intersection of
*self* and *other*.
.. warning:: `SkyLine.intersection` only returns
`polygon` without `members`.
Parameters
----------
other : `SkyLine` object
Examples
--------
>>> s1 = SkyLine('image1.fits')
>>> s2 = SkyLine('image2.fits')
>>> s3 = s1.find_intersection(s2)
"""
newcls = self.__class__(None)
newcls.polygon = self.intersection(other)
newcls.members = newcls._find_members(self.members + other.members)
return newcls
def find_max_overlap(self, skylines):
"""
Find `SkyLine` from a list of *skylines* that overlaps
the most with *self*.
Parameters
----------
skylines : list
A list of `SkyLine` instances.
Returns
-------
max_skyline : `SkyLine` instance or `None`
`SkyLine` that overlaps the most or `None` if no
overlap found. This is *not* a copy.
max_overlap_area : float
Area of intersection.
"""
max_skyline = None
max_overlap_area = 0.0
for next_s in skylines:
try:
overlap_area = self.intersection(next_s).area()
except (ValueError, AssertionError):
if SKYLINE_DEBUG:
print('WARNING: Intersection failed for %s and %s. '
'Ignoring %s...' % (self._rough_id(),
next_s._rough_id(),
next_s._rough_id()))
overlap_area = 0.0
else:
raise
if overlap_area > max_overlap_area:
max_overlap_area = overlap_area
max_skyline = next_s
return max_skyline, max_overlap_area
@staticmethod
def max_overlap_pair(skylines):
"""
Find a pair of skylines with maximum overlap.
Parameters
----------
skylines : list
A list of `SkyLine` instances.
Returns
-------
max_pair : tuple
Pair of `SkyLine` objects with max overlap
among given *skylines*. If no overlap found,
return `None`. These are *not* copies.
"""
max_pair = None
max_overlap_area = 0.0
for i in xrange(len(skylines) - 1):
curr_s = skylines[i]
next_s, i_area = curr_s.find_max_overlap(skylines[i+1:])
if i_area > max_overlap_area:
max_overlap_area = i_area
max_pair = (curr_s, next_s)
return max_pair
@classmethod
def mosaic(cls, skylines, verbose=True):
"""
Mosaic all overlapping *skylines*.
A pair of skylines with the most overlap is used as
a starting point. Then a skyline that overlaps the
most with the mosaic is used, and so forth until no
overlapping skyline is found.
Parameters
----------
skylines : list
A list of `SkyLine` objects.
verbose : bool
Print info to screen.
Returns
-------
mosaic : `SkyLine` instance or `None`
Union of all overlapping *skylines*, or `None` if
no overlap found.
included : list
List of image names added to mosaic in the order
of addition.
excluded : list
List of image names excluded because they do not
overlap with mosaic.
"""
out_order = []
excluded = []
if verbose:
print('***** SKYLINE MOSAIC *****')
starting_pair = cls.max_overlap_pair(skylines)
if starting_pair is None:
if verbose:
print(' Cannot find any overlapping skylines. Aborting...')
return starting_pair, out_order, excluded
remaining = list(skylines)
s1, s2 = starting_pair
if verbose:
print(' Starting pair: %s, %s' %
(s1._rough_id(), s2._rough_id()))
mosaic = s1.add_image(s2)
out_order = [s1._rough_id(), s2._rough_id()]
remaining.remove(s1)
remaining.remove(s2)
while len(remaining) > 0:
next_skyline, i_area = mosaic.find_max_overlap(remaining)
if next_skyline is None:
for r in remaining:
if verbose:
print(' No overlap: Excluding %s...' % r._rough_id())
excluded.append(r._rough_id())
break
try:
new_mos = mosaic.add_image(next_skyline)
except (ValueError, AssertionError):
if SKYLINE_DEBUG:
print('WARNING: Cannot add %s to mosaic. Skipping it...' %
next_skyline._rough_id())
excluded.append(next_skyline._rough_id())
else:
raise
else:
print(' Adding %s to mosaic...' % next_skyline._rough_id())
mosaic = new_mos
out_order.append(next_skyline._rough_id())
finally:
remaining.remove(next_skyline)
return mosaic, out_order, excluded
@classmethod
def _find_frosty(cls, show=False):
s1 = SphericalPolygon.from_cone(0, 35, 8)
s2 = SphericalPolygon.from_cone(0, 20, 13)
s3 = SphericalPolygon.from_cone(0, 0, 20)
ss = SphericalPolygon.multi_union([s1,s2,s3])
frosty = cls(None)
frosty.polygon = ss
if show:
from mpl_toolkits.basemap import Basemap
map = Basemap()
frosty.draw(map)
print('Frosty the Snowman says Brrr so cold...')
return frosty
|