1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
"""Manage outlines on the sky.
This module provides support for working with footprints
on the sky. Primary use case would use the following
generalized steps::
#. Initialize SkyLine objects for each input image.
This object would be the union of all the input
image's individual chips WCS footprints.
#. Determine overlap between all images. The
determination would employ a recursive operation
to return the extended list of all overlap values
computed as [img1 vs [img2,img3,...,imgN],img2 vs
[img3,...,imgN],...]
#. Select the pair with the largest overlap, or the
pair which produces the largest overlap with the
first input image. This defines the initial
reference SkyLine object.
#. Perform some operation on the 2 images: for example,
match sky in intersecting regions, or aligning
second image with the first (reference) image.
#. Update the second image, either apply the sky value
or correct the WCS, then generate a new SkyLine
object for that image.
#. Create a new reference SkyLine object as the union
of the initial reference object and the newly
updated SkyLine object.
#. Repeat Steps 2-6 for all remaining input images.
This process will work reasonably fast as most operations
are performed using the SkyLine objects and WCS information
solely, not image data itself.
.. note:: Requires Python 2.7 or later.
:Authors: Pey Lian Lim, W. Hack
:Organization: Space Telescope Science Institute
:History:
* 2012-05-25 PLL updated doc. Original class structure by WJH.
Examples
--------
>>> from sphere import SkyLine
"""
from __future__ import division, print_function
# STDLIB
from copy import copy, deepcopy
# THIRD-PARTY
import pyfits
from stwcs import wcsutil
# LOCAL
from sphere.polygon import SphericalPolygon
__all__ = ['SkyLine']
__version__ = '0.1a'
__vdate__ = '31-May-2012'
class SkyLineMember(object):
def __init__(self, fname, ext):
"""Container for SkyLine members.
Given FITS image and extension, will store its SphericalPolygon
instance from WCS under `polygon`.
self: obj
SkyLineMember instance.
fname: str
FITS image.
ext: int
Image extension.
"""
self._fname = fname
self._ext = ext
self._polygon = SphericalPolygon.from_wcs(
wcsutil.HSTWCS(fname, ext=ext))
def __repr__(self):
return 'SkyLineMember(%r, %r, %r)' % (self.fname, self.ext,
self.polygon)
@property
def fname(self):
return self._fname
@property
def ext(self):
return self._ext
@property
def polygon(self):
return self._polygon
class SkyLine(SphericalPolygon):
def __init__(self, fname):
"""Initialize SkyLine object instance.
Parameters
----------
self: obj
SkyLine instance.
fname: str
FITS image.
"""
# Inherit from SphericalPolygon
SphericalPolygon.__init__(self, [], None)
# Convert SCI data to SkyLineMember
poly_list = []
with pyfits.open(fname) as pf:
for i,ext in enumerate(pf):
if 'SCI' in ext.name.upper():
poly_list.append(SkyLineMember(fname, i))
assert len(poly_list) > 0, \
'SkyLine cannot find SCI ext in {}.'.format(fname)
# Put mosaic of all the chips in SkyLine
self._update(self.multi_union([m.polygon for m in poly_list]),
poly_list)
def __repr__(self):
return 'SkyLine(%r, %r, %r)' % (self.points, self.inside, self.members)
def _update(self, new_polygon, new_members):
"""
Update *self* attributes to use given polygon and
new members.
Parameters
----------
self: obj
SkyLine instance to update.
new_polygon: obj
SphericalPolygon instance to use.
new_members: list
List of SkyLineMember associated with `new_polygon`.
"""
self._points = new_polygon.points
self._inside = new_polygon.inside
self._members = new_members
@property
def members(self):
"""List of SkyLineMember objects."""
return self._members
@property
def polygons(self):
"""List of SkyLineMember polygons."""
return [m.polygon for m in self.members]
@classmethod
def from_radec(cls, ra, dec, center=None, degrees=True):
"""See SphericalPolygon."""
return SphericalPolygon.from_radec(ra, dec, center=center,
degrees=degrees)
@classmethod
def from_cone(cls, ra, dec, radius, degrees=True, steps=16.0):
"""See SphericalPolygon."""
return SphericalPolygon.from_cone(ra, dec, radius, degrees=degrees,
steps=steps)
@classmethod
def from_wcs(cls, fitspath, steps=1, crval=None):
"""See SphericalPolygon."""
return SphericalPolygon.from_wcs(fitspath, steps=steps, crval=crval)
@classmethod
def multi_union(cls, polygons, method='parallel'):
"""See SphericalPolygon."""
return SphericalPolygon.multi_union(polygons, method=method)
@classmethod
def multi_intersection(cls, polygons, method='parallel'):
"""See SphericalPolygon."""
return SphericalPolygon.multi_intersection(polygons, method=method)
def union(self, other):
"""
Return a new `SkyLine` that is the union of *self* and *other*.
Skips *other* members that are already in *self*.
Parameters
----------
self, other: obj
`SkyLine` instance.
Returns
-------
out_skyline: obj
`SkyLine` instance.
Examples
--------
>>> s1 = SkyLine('image1.fits')
>>> s2 = SkyLine('image2.fits')
>>> s3 = s1.union(s2)
See also
--------
sphere.polygon.SphericalPolygon.union
"""
out_skyline = copy(self)
# Not using set -- need to keep order
new_members = [m for m in other.members if m not in self.members]
if len(new_members) > 0:
all_poly = self.multi_union(self.polygons +
[m.polygon for m in new_members])
out_skyline._update(all_poly, self.members + new_members)
return out_skyline
def intersection(self, other):
"""
Return a new `SkyLine` that is the intersection of
*self* and *other*.
Parameters
----------
self, other: obj
`SkyLine` instance.
Returns
-------
out_skyline: obj
`SkyLine` instance.
Examples
--------
>>> s1 = SkyLine('image1.fits')
>>> s2 = SkyLine('image2.fits')
>>> s3 = s1.intersection(s2)
See also
--------
sphere.polygon.SphericalPolygon.intersection
"""
pass
# Overload parent class with following changes
# a. add own attr
def add_image(self,skyline):
"""Make composite SkyLine"""
pass
def compute_overlap(self, skyline):
"""Return sphere object with intersect of 2 skylines.
Wrapper of sphere overlap method.
"""
pass
def find_intersection(self, skyline):
"""
Return WCS object of overlap of 2 skylines.
"""
pass
def create_wcs(self):
"""Create WCS from SkyLine object.
.. note:: Use stwcs to define a plane using multiple HSTWCS object
Returns
-------
wcs: obj
New HSTWCS objects.
"""
pass
def footprints(self):
"""Compute edges of skyline."""
pass
def test():
"""Basic use case."""
pass
|