diff options
author | Nadia Dencheva <nadia.astropy@gmail.com> | 2016-08-07 12:23:24 -0400 |
---|---|---|
committer | GitHub <noreply@github.com> | 2016-08-07 12:23:24 -0400 |
commit | a2e16e39b0eb8ac0251a6473c60fee0d437c3a5f (patch) | |
tree | 7b6771e9c1974852eb8a283507677651078ce32a /lib/stwcs/distortion/mutil.py | |
parent | 86d1bc5a77491770d45b86e5cf18b79ded68fb9b (diff) | |
parent | 2dc0676bc00f66a87737e78484876051633b731a (diff) | |
download | stwcs_hcf-a2e16e39b0eb8ac0251a6473c60fee0d437c3a5f.tar.gz |
Merge pull request #9 from nden/refactor-and-tests
restructure and add stwcs tests
Diffstat (limited to 'lib/stwcs/distortion/mutil.py')
-rw-r--r-- | lib/stwcs/distortion/mutil.py | 703 |
1 files changed, 0 insertions, 703 deletions
diff --git a/lib/stwcs/distortion/mutil.py b/lib/stwcs/distortion/mutil.py deleted file mode 100644 index ed6a1ea..0000000 --- a/lib/stwcs/distortion/mutil.py +++ /dev/null @@ -1,703 +0,0 @@ -from __future__ import division, print_function # confidence high - -from stsci.tools import fileutil -import numpy as np -import calendar - -# Set up IRAF-compatible Boolean values -yes = True -no = False - -# This function read the IDC table and generates the two matrices with -# the geometric correction coefficients. -# -# INPUT: FITS object of open IDC table -# OUTPUT: coefficient matrices for Fx and Fy -# -#### If 'tabname' == None: This should return a default, undistorted -#### solution. -# - -def readIDCtab (tabname, chip=1, date=None, direction='forward', - filter1=None,filter2=None, offtab=None): - - """ - Read IDCTAB, and optional OFFTAB if sepcified, and generate - the two matrices with the geometric correction coefficients. - - If tabname == None, then return a default, undistorted solution. - If offtab is specified, dateobs also needs to be given. - - """ - - # Return a default geometry model if no IDCTAB filename - # is given. This model will not distort the data in any way. - if tabname == None: - print('Warning: No IDCTAB specified! No distortion correction will be applied.') - return defaultModel() - - # Implement default values for filters here to avoid the default - # being overwritten by values of None passed by user. - if filter1 == None or filter1.find('CLEAR') == 0 or filter1.strip() == '': - filter1 = 'CLEAR' - if filter2 == None or filter2.find('CLEAR') == 0 or filter2.strip() == '': - filter2 = 'CLEAR' - - # Insure that tabname is full filename with fully expanded - # IRAF variables; i.e. 'jref$mc41442gj_idc.fits' should get - # expanded to '/data/cdbs7/jref/mc41442gj_idc.fits' before - # being used here. - # Open up IDC table now... - try: - ftab = fileutil.openImage(tabname) - except: - err_str = "------------------------------------------------------------------------ \n" - err_str += "WARNING: the IDCTAB geometric distortion file specified in the image \n" - err_str += "header was not found on disk. Please verify that your environment \n" - err_str += "variable ('jref'/'uref'/'oref'/'nref') has been correctly defined. If \n" - err_str += "you do not have the IDCTAB file, you may obtain the latest version \n" - err_str += "of it from the relevant instrument page on the STScI HST website: \n" - err_str += "http://www.stsci.edu/hst/ For WFPC2, STIS and NICMOS data, the \n" - err_str += "present run will continue using the old coefficients provided in \n" - err_str += "the Dither Package (ca. 1995-1998). \n" - err_str += "------------------------------------------------------------------------ \n" - raise IOError(err_str) - - #First thing we need, is to read in the coefficients from the IDC - # table and populate the Fx and Fy matrices. - - if 'DETECTOR' in ftab['PRIMARY'].header: - detector = ftab['PRIMARY'].header['DETECTOR'] - else: - if 'CAMERA' in ftab['PRIMARY'].header: - detector = str(ftab['PRIMARY'].header['CAMERA']) - else: - detector = 1 - # First, read in TDD coeffs if present - phdr = ftab['PRIMARY'].header - instrument = phdr['INSTRUME'] - if instrument == 'ACS' and detector == 'WFC': - skew_coeffs = read_tdd_coeffs(phdr, chip=chip) - else: - skew_coeffs = None - - # Set default filters for SBC - if detector == 'SBC': - if filter1 == 'CLEAR': - filter1 = 'F115LP' - filter2 = 'N/A' - if filter2 == 'CLEAR': - filter2 = 'N/A' - - # Read FITS header to determine order of fit, i.e. k - norder = ftab['PRIMARY'].header['NORDER'] - if norder < 3: - order = 3 - else: - order = norder - - fx = np.zeros(shape=(order+1,order+1),dtype=np.float64) - fy = np.zeros(shape=(order+1,order+1),dtype=np.float64) - - #Determine row from which to get the coefficients. - # How many rows do we have in the table... - fshape = ftab[1].data.shape - colnames = ftab[1].data.names - row = -1 - - # Loop over all the rows looking for the one which corresponds - # to the value of CCDCHIP we are working on... - for i in range(fshape[0]): - - try: - # Match FILTER combo to appropriate row, - #if there is a filter column in the IDCTAB... - if 'FILTER1' in colnames and 'FILTER2' in colnames: - - filt1 = ftab[1].data.field('FILTER1')[i] - if filt1.find('CLEAR') > -1: filt1 = filt1[:5] - - filt2 = ftab[1].data.field('FILTER2')[i] - if filt2.find('CLEAR') > -1: filt2 = filt2[:5] - else: - if 'OPT_ELEM' in colnames: - filt1 = ftab[1].data.field('OPT_ELEM') - if filt1.find('CLEAR') > -1: filt1 = filt1[:5] - else: - filt1 = filter1 - - if 'FILTER' in colnames: - _filt = ftab[1].data.field('FILTER')[i] - if _filt.find('CLEAR') > -1: _filt = _filt[:5] - if 'OPT_ELEM' in colnames: - filt2 = _filt - else: - filt1 = _filt - filt2 = 'CLEAR' - else: - filt2 = filter2 - except: - # Otherwise assume all rows apply and compare to input filters... - filt1 = filter1 - filt2 = filter2 - - if 'DETCHIP' in colnames: - detchip = ftab[1].data.field('DETCHIP')[i] - if not str(detchip).isdigit(): - detchip = 1 - else: - detchip = 1 - - if 'DIRECTION' in colnames: - direct = ftab[1].data.field('DIRECTION')[i].lower().strip() - else: - direct = 'forward' - - if filt1 == filter1.strip() and filt2 == filter2.strip(): - if direct == direction.strip(): - if int(detchip) == int(chip) or int(detchip) == -999: - row = i - break - - joinstr = ',' - if 'CLEAR' in filter1: - f1str = '' - joinstr = '' - else: - f1str = filter1.strip() - if 'CLEAR' in filter2: - f2str = '' - joinstr = '' - else: - f2str = filter2.strip() - filtstr = (joinstr.join([f1str,f2str])).strip() - if row < 0: - err_str = '\nProblem finding row in IDCTAB! Could not find row matching:\n' - err_str += ' CHIP: '+str(detchip)+'\n' - err_str += ' FILTERS: '+filtstr+'\n' - ftab.close() - del ftab - raise LookupError(err_str) - else: - print('- IDCTAB: Distortion model from row',str(row+1),'for chip',detchip,':',filtstr) - - # Read in V2REF and V3REF: this can either come from current table, - # or from an OFFTAB if time-dependent (i.e., for WFPC2) - theta = None - if 'V2REF' in colnames: - v2ref = ftab[1].data.field('V2REF')[row] - v3ref = ftab[1].data.field('V3REF')[row] - else: - # Read V2REF/V3REF from offset table (OFFTAB) - if offtab: - v2ref,v3ref,theta = readOfftab(offtab, date, chip=detchip) - else: - v2ref = 0.0 - v3ref = 0.0 - - if theta == None: - if 'THETA' in colnames: - theta = ftab[1].data.field('THETA')[row] - else: - theta = 0.0 - - refpix = {} - refpix['XREF'] = ftab[1].data.field('XREF')[row] - refpix['YREF'] = ftab[1].data.field('YREF')[row] - refpix['XSIZE'] = ftab[1].data.field('XSIZE')[row] - refpix['YSIZE'] = ftab[1].data.field('YSIZE')[row] - refpix['PSCALE'] = round(ftab[1].data.field('SCALE')[row],8) - refpix['V2REF'] = v2ref - refpix['V3REF'] = v3ref - refpix['THETA'] = theta - refpix['XDELTA'] = 0.0 - refpix['YDELTA'] = 0.0 - refpix['DEFAULT_SCALE'] = yes - refpix['centered'] = no - refpix['skew_coeffs'] = skew_coeffs - # Now that we know which row to look at, read coefficients into the - # numeric arrays we have set up... - # Setup which column name convention the IDCTAB follows - # either: A,B or CX,CY - if 'CX10' in ftab[1].data.names: - cxstr = 'CX' - cystr = 'CY' - else: - cxstr = 'A' - cystr = 'B' - - for i in range(norder+1): - if i > 0: - for j in range(i+1): - xcname = cxstr+str(i)+str(j) - ycname = cystr+str(i)+str(j) - fx[i,j] = ftab[1].data.field(xcname)[row] - fy[i,j] = ftab[1].data.field(ycname)[row] - - ftab.close() - del ftab - - # If CX11 is 1.0 and not equal to the PSCALE, then the - # coeffs need to be scaled - - if fx[1,1] == 1.0 and abs(fx[1,1]) != refpix['PSCALE']: - fx *= refpix['PSCALE'] - fy *= refpix['PSCALE'] - - # Return arrays and polynomial order read in from table. - # NOTE: XREF and YREF are stored in Fx,Fy arrays respectively. - return fx,fy,refpix,order -# -# -# Time-dependent skew correction coefficients (only ACS/WFC) -# -# -def read_tdd_coeffs(phdr, chip=1): - ''' Read in the TDD related keywords from the PRIMARY header of the IDCTAB - ''' - # Insure we have an integer form of chip - ic = int(chip) - - skew_coeffs = {} - skew_coeffs['TDDORDER'] = 0 - skew_coeffs['TDD_DATE'] = "" - skew_coeffs['TDD_A'] = None - skew_coeffs['TDD_B'] = None - skew_coeffs['TDD_CY_BETA'] = None - skew_coeffs['TDD_CY_ALPHA'] = None - skew_coeffs['TDD_CX_BETA'] = None - skew_coeffs['TDD_CX_ALPHA'] = None - - # Skew-based TDD coefficients - skew_terms = ['TDD_CTB','TDD_CTA','TDD_CYA','TDD_CYB','TDD_CXA','TDD_CXB'] - for s in skew_terms: - skew_coeffs[s] = None - - if "TDD_CTB1" in phdr: - # We have the 2015-calibrated TDD correction to apply - # This correction is based on correcting the skew in the linear terms - # not just set polynomial terms - print("Using 2015-calibrated VAFACTOR-corrected TDD correction...") - skew_coeffs['TDD_DATE'] = phdr['TDD_DATE'] - for s in skew_terms: - skew_coeffs[s] = phdr.get('{0}{1}'.format(s,ic),None) - - elif "TDD_CYB1" in phdr: - # We have 2014-calibrated TDD correction to apply, not J.A.-derived values - print("Using 2014-calibrated TDD correction...") - skew_coeffs['TDD_DATE'] = phdr['TDD_DATE'] - # Read coefficients for TDD Y coefficient - cyb_kw = 'TDD_CYB{0}'.format(int(chip)) - skew_coeffs['TDD_CY_BETA'] = phdr.get(cyb_kw,None) - cya_kw = 'TDD_CYA{0}'.format(int(chip)) - tdd_cya = phdr.get(cya_kw,None) - if tdd_cya == 0 or tdd_cya == 'N/A': tdd_cya = None - skew_coeffs['TDD_CY_ALPHA'] = tdd_cya - - # Read coefficients for TDD X coefficient - cxb_kw = 'TDD_CXB{0}'.format(int(chip)) - skew_coeffs['TDD_CX_BETA'] = phdr.get(cxb_kw,None) - cxa_kw = 'TDD_CXA{0}'.format(int(chip)) - tdd_cxa = phdr.get(cxa_kw,None) - if tdd_cxa == 0 or tdd_cxa == 'N/A': tdd_cxa = None - skew_coeffs['TDD_CX_ALPHA'] = tdd_cxa - - else: - if "TDDORDER" in phdr: - n = int(phdr["TDDORDER"]) - else: - print('TDDORDER kw not present, using default TDD correction') - return None - - a = np.zeros((n+1,), np.float64) - b = np.zeros((n+1,), np.float64) - for i in range(n+1): - a[i] = phdr.get(("TDD_A%d" % i), 0.0) - b[i] = phdr.get(("TDD_B%d" % i), 0.0) - if (a==0).all() and (b==0).all(): - print('Warning: TDD_A and TDD_B coeffiecients have values of 0, \n \ - but TDDORDER is %d.' % TDDORDER) - - skew_coeffs['TDDORDER'] = n - skew_coeffs['TDD_DATE'] = phdr['TDD_DATE'] - skew_coeffs['TDD_A'] = a - skew_coeffs['TDD_B'] = b - - return skew_coeffs - -def readOfftab(offtab, date, chip=None): - - -#Read V2REF,V3REF from a specified offset table (OFFTAB). -# Return a default geometry model if no IDCTAB filenam e -# is given. This model will not distort the data in any way. - - if offtab == None: - return 0.,0. - - # Provide a default value for chip - if chip: - detchip = chip - else: - detchip = 1 - - # Open up IDC table now... - try: - ftab = fileutil.openImage(offtab) - except: - raise IOError("Offset table '%s' not valid as specified!" % offtab) - - #Determine row from which to get the coefficients. - # How many rows do we have in the table... - fshape = ftab[1].data.shape - colnames = ftab[1].data.names - row = -1 - - row_start = None - row_end = None - - v2end = None - v3end = None - date_end = None - theta_end = None - - num_date = convertDate(date) - # Loop over all the rows looking for the one which corresponds - # to the value of CCDCHIP we are working on... - for ri in range(fshape[0]): - i = fshape[0] - ri - 1 - if 'DETCHIP' in colnames: - detchip = ftab[1].data.field('DETCHIP')[i] - else: - detchip = 1 - - obsdate = convertDate(ftab[1].data.field('OBSDATE')[i]) - - # If the row is appropriate for the chip... - # Interpolate between dates - if int(detchip) == int(chip) or int(detchip) == -999: - if num_date <= obsdate: - date_end = obsdate - v2end = ftab[1].data.field('V2REF')[i] - v3end = ftab[1].data.field('V3REF')[i] - theta_end = ftab[1].data.field('THETA')[i] - row_end = i - continue - - if row_end == None and (num_date > obsdate): - date_end = obsdate - v2end = ftab[1].data.field('V2REF')[i] - v3end = ftab[1].data.field('V3REF')[i] - theta_end = ftab[1].data.field('THETA')[i] - row_end = i - continue - - if num_date > obsdate: - date_start = obsdate - v2start = ftab[1].data.field('V2REF')[i] - v3start = ftab[1].data.field('V3REF')[i] - theta_start = ftab[1].data.field('THETA')[i] - row_start = i - break - - ftab.close() - del ftab - - if row_start == None and row_end == None: - print('Row corresponding to DETCHIP of ',detchip,' was not found!') - raise LookupError - elif row_start == None: - print('- OFFTAB: Offset defined by row',str(row_end+1)) - else: - print('- OFFTAB: Offset interpolated from rows',str(row_start+1),'and',str(row_end+1)) - - # Now, do the interpolation for v2ref, v3ref, and theta - if row_start == None or row_end == row_start: - # We are processing an observation taken after the last calibration - date_start = date_end - v2start = v2end - v3start = v3end - _fraction = 0. - theta_start = theta_end - else: - _fraction = float((num_date - date_start)) / float((date_end - date_start)) - - v2ref = _fraction * (v2end - v2start) + v2start - v3ref = _fraction * (v3end - v3start) + v3start - theta = _fraction * (theta_end - theta_start) + theta_start - - return v2ref,v3ref,theta - -def readWCSCoeffs(header): - - #Read distortion coeffs from WCS header keywords and - #populate distortion coeffs arrays. - - # Read in order for polynomials - _xorder = header['a_order'] - _yorder = header['b_order'] - order = max(max(_xorder,_yorder),3) - - fx = np.zeros(shape=(order+1,order+1),dtype=np.float64) - fy = np.zeros(shape=(order+1,order+1),dtype=np.float64) - - # Read in CD matrix - _cd11 = header['cd1_1'] - _cd12 = header['cd1_2'] - _cd21 = header['cd2_1'] - _cd22 = header['cd2_2'] - _cdmat = np.array([[_cd11,_cd12],[_cd21,_cd22]]) - _theta = np.arctan2(-_cd12,_cd22) - _rotmat = np.array([[np.cos(_theta),np.sin(_theta)], - [-np.sin(_theta),np.cos(_theta)]]) - _rCD = np.dot(_rotmat,_cdmat) - _skew = np.arcsin(-_rCD[1][0] / _rCD[0][0]) - _scale = _rCD[0][0] * np.cos(_skew) * 3600. - _scale2 = _rCD[1][1] * 3600. - - # Set up refpix - refpix = {} - refpix['XREF'] = header['crpix1'] - refpix['YREF'] = header['crpix2'] - refpix['XSIZE'] = header['naxis1'] - refpix['YSIZE'] = header['naxis2'] - refpix['PSCALE'] = _scale - refpix['V2REF'] = 0. - refpix['V3REF'] = 0. - refpix['THETA'] = np.rad2deg(_theta) - refpix['XDELTA'] = 0.0 - refpix['YDELTA'] = 0.0 - refpix['DEFAULT_SCALE'] = yes - refpix['centered'] = yes - - - # Set up template for coeffs keyword names - cxstr = 'A_' - cystr = 'B_' - # Read coeffs into their own matrix - for i in range(_xorder+1): - for j in range(i+1): - xcname = cxstr+str(j)+'_'+str(i-j) - if xcname in header: - fx[i,j] = header[xcname] - - # Extract Y coeffs separately as a different order may - # have been used to fit it. - for i in range(_yorder+1): - for j in range(i+1): - ycname = cystr+str(j)+'_'+str(i-j) - if ycname in header: - fy[i,j] = header[ycname] - - # Now set the linear terms - fx[0][0] = 1.0 - fy[0][0] = 1.0 - - return fx,fy,refpix,order - - -def readTraugerTable(idcfile,wavelength): - - # Return a default geometry model if no coefficients filename - # is given. This model will not distort the data in any way. - if idcfile == None: - return fileutil.defaultModel() - - # Trauger coefficients only result in a cubic file... - order = 3 - numco = 10 - a_coeffs = [0] * numco - b_coeffs = [0] * numco - indx = _MgF2(wavelength) - - ifile = open(idcfile,'r') - # Search for the first line of the coefficients - _line = fileutil.rAsciiLine(ifile) - while _line[:7].lower() != 'trauger': - _line = fileutil.rAsciiLine(ifile) - # Read in each row of coefficients,split them into their values, - # and convert them into cubic coefficients based on - # index of refraction value for the given wavelength - # Build X coefficients from first 10 rows of Trauger coefficients - j = 0 - while j < 20: - _line = fileutil.rAsciiLine(ifile) - if _line == '': continue - _lc = _line.split() - if j < 10: - a_coeffs[j] = float(_lc[0])+float(_lc[1])*(indx-1.5)+float(_lc[2])*(indx-1.5)**2 - else: - b_coeffs[j-10] = float(_lc[0])+float(_lc[1])*(indx-1.5)+float(_lc[2])*(indx-1.5)**2 - j = j + 1 - - ifile.close() - del ifile - - # Now, convert the coefficients into a Numeric array - # with the right coefficients in the right place. - # Populate output values now... - fx = np.zeros(shape=(order+1,order+1),dtype=np.float64) - fy = np.zeros(shape=(order+1,order+1),dtype=np.float64) - # Assign the coefficients to their array positions - fx[0,0] = 0. - fx[1] = np.array([a_coeffs[2],a_coeffs[1],0.,0.],dtype=np.float64) - fx[2] = np.array([a_coeffs[5],a_coeffs[4],a_coeffs[3],0.],dtype=np.float64) - fx[3] = np.array([a_coeffs[9],a_coeffs[8],a_coeffs[7],a_coeffs[6]],dtype=np.float64) - fy[0,0] = 0. - fy[1] = np.array([b_coeffs[2],b_coeffs[1],0.,0.],dtype=np.float64) - fy[2] = np.array([b_coeffs[5],b_coeffs[4],b_coeffs[3],0.],dtype=np.float64) - fy[3] = np.array([b_coeffs[9],b_coeffs[8],b_coeffs[7],b_coeffs[6]],dtype=np.float64) - - # Used in Pattern.computeOffsets() - refpix = {} - refpix['XREF'] = None - refpix['YREF'] = None - refpix['V2REF'] = None - refpix['V3REF'] = None - refpix['XDELTA'] = 0. - refpix['YDELTA'] = 0. - refpix['PSCALE'] = None - refpix['DEFAULT_SCALE'] = no - refpix['centered'] = yes - - return fx,fy,refpix,order - - -def readCubicTable(idcfile): - # Assumption: this will only be used for cubic file... - order = 3 - # Also, this function does NOT perform any scaling on - # the coefficients, it simply passes along what is found - # in the file as is... - - # Return a default geometry model if no coefficients filename - # is given. This model will not distort the data in any way. - if idcfile == None: - return fileutil.defaultModel() - - ifile = open(idcfile,'r') - # Search for the first line of the coefficients - _line = fileutil.rAsciiLine(ifile) - - _found = no - while _found == no: - if _line[:7] in ['cubic','quartic','quintic'] or _line[:4] == 'poly': - found = yes - break - _line = fileutil.rAsciiLine(ifile) - - # Read in each row of coefficients, without line breaks or newlines - # split them into their values, and create a list for A coefficients - # and another list for the B coefficients - _line = fileutil.rAsciiLine(ifile) - a_coeffs = _line.split() - - x0 = float(a_coeffs[0]) - _line = fileutil.rAsciiLine(ifile) - a_coeffs[len(a_coeffs):] = _line.split() - # Scale coefficients for use within PyDrizzle - for i in range(len(a_coeffs)): - a_coeffs[i] = float(a_coeffs[i]) - - _line = fileutil.rAsciiLine(ifile) - b_coeffs = _line.split() - y0 = float(b_coeffs[0]) - _line = fileutil.rAsciiLine(ifile) - b_coeffs[len(b_coeffs):] = _line.split() - # Scale coefficients for use within PyDrizzle - for i in range(len(b_coeffs)): - b_coeffs[i] = float(b_coeffs[i]) - - ifile.close() - del ifile - # Now, convert the coefficients into a Numeric array - # with the right coefficients in the right place. - # Populate output values now... - fx = np.zeros(shape=(order+1,order+1),dtype=np.float64) - fy = np.zeros(shape=(order+1,order+1),dtype=np.float64) - # Assign the coefficients to their array positions - fx[0,0] = 0. - fx[1] = np.array([a_coeffs[2],a_coeffs[1],0.,0.],dtype=np.float64) - fx[2] = np.array([a_coeffs[5],a_coeffs[4],a_coeffs[3],0.],dtype=np.float64) - fx[3] = np.array([a_coeffs[9],a_coeffs[8],a_coeffs[7],a_coeffs[6]],dtype=np.float64) - fy[0,0] = 0. - fy[1] = np.array([b_coeffs[2],b_coeffs[1],0.,0.],dtype=np.float64) - fy[2] = np.array([b_coeffs[5],b_coeffs[4],b_coeffs[3],0.],dtype=np.float64) - fy[3] = np.array([b_coeffs[9],b_coeffs[8],b_coeffs[7],b_coeffs[6]],dtype=np.float64) - - # Used in Pattern.computeOffsets() - refpix = {} - refpix['XREF'] = None - refpix['YREF'] = None - refpix['V2REF'] = x0 - refpix['V3REF'] = y0 - refpix['XDELTA'] = 0. - refpix['YDELTA'] = 0. - refpix['PSCALE'] = None - refpix['DEFAULT_SCALE'] = no - refpix['centered'] = yes - - return fx,fy,refpix,order - -def factorial(n): - """ Compute a factorial for integer n. """ - m = 1 - for i in range(int(n)): - m = m * (i+1) - return m - -def combin(j,n): - """ Return the combinatorial factor for j in n.""" - return (factorial(j) / (factorial(n) * factorial( (j-n) ) ) ) - - -def defaultModel(): - """ This function returns a default, non-distorting model - that can be used with the data. - """ - order = 3 - - fx = np.zeros(shape=(order+1,order+1),dtype=np.float64) - fy = np.zeros(shape=(order+1,order+1),dtype=np.float64) - - fx[1,1] = 1. - fy[1,0] = 1. - - # Used in Pattern.computeOffsets() - refpix = {} - refpix['empty_model'] = yes - refpix['XREF'] = None - refpix['YREF'] = None - refpix['V2REF'] = 0. - refpix['XSIZE'] = 0. - refpix['YSIZE'] = 0. - refpix['V3REF'] = 0. - refpix['XDELTA'] = 0. - refpix['YDELTA'] = 0. - refpix['PSCALE'] = None - refpix['DEFAULT_SCALE'] = no - refpix['THETA'] = 0. - refpix['centered'] = yes - return fx,fy,refpix,order - -# Function to compute the index of refraction for MgF2 at -# the specified wavelength for use with Trauger coefficients -def _MgF2(lam): - _sig = pow((1.0e7/lam),2) - return np.sqrt(1.0 + 2.590355e10/(5.312993e10-_sig) + - 4.4543708e9/(11.17083e9-_sig) + 4.0838897e5/(1.766361e5-_sig)) - - -def convertDate(date): - """ Converts the DATE-OBS date string into an integer of the - number of seconds since 1970.0 using calendar.timegm(). - - INPUT: DATE-OBS in format of 'YYYY-MM-DD'. - OUTPUT: Date (integer) in seconds. - """ - - _dates = date.split('-') - _val = 0 - _date_tuple = (int(_dates[0]), int(_dates[1]), int(_dates[2]), 0, 0, 0, 0, 0, 0) - - return calendar.timegm(_date_tuple) |