diff options
author | Nadia Dencheva <nadia.astropy@gmail.com> | 2016-08-07 12:23:24 -0400 |
---|---|---|
committer | GitHub <noreply@github.com> | 2016-08-07 12:23:24 -0400 |
commit | a2e16e39b0eb8ac0251a6473c60fee0d437c3a5f (patch) | |
tree | 7b6771e9c1974852eb8a283507677651078ce32a /stwcs/updatewcs/makewcs.py | |
parent | 86d1bc5a77491770d45b86e5cf18b79ded68fb9b (diff) | |
parent | 2dc0676bc00f66a87737e78484876051633b731a (diff) | |
download | stwcs_hcf-a2e16e39b0eb8ac0251a6473c60fee0d437c3a5f.tar.gz |
Merge pull request #9 from nden/refactor-and-tests
restructure and add stwcs tests
Diffstat (limited to 'stwcs/updatewcs/makewcs.py')
-rw-r--r-- | stwcs/updatewcs/makewcs.py | 273 |
1 files changed, 273 insertions, 0 deletions
diff --git a/stwcs/updatewcs/makewcs.py b/stwcs/updatewcs/makewcs.py new file mode 100644 index 0000000..06c6f9c --- /dev/null +++ b/stwcs/updatewcs/makewcs.py @@ -0,0 +1,273 @@ +from __future__ import absolute_import, division # confidence high + +import datetime + +import numpy as np +import logging, time +from math import sin, sqrt, pow, cos, asin, atan2,pi + +from stsci.tools import fileutil +from . import utils + +logger = logging.getLogger(__name__) + +class MakeWCS(object): + """ + Recompute basic WCS keywords based on PA_V3 and distortion model. + + Notes + ----- + - Compute the reference chip WCS: + + -- CRVAL: transform the model XREF/YREF to the sky + -- PA_V3 is calculated at the target position and adjusted + for each chip orientation + -- CD: PA_V3 and the model scale are used to cnstruct a CD matrix + + - Compute the second chip WCS: + + -- CRVAL: - the distance between the zero points of the two + chip models on the sky + -- CD matrix: first order coefficients are added to the components + of this distance and transfered on the sky. The difference + between CRVAL and these vectors is the new CD matrix for each chip. + -- CRPIX: chip's model zero point in pixel space (XREF/YREF) + + - Time dependent distortion correction is applied to both chips' V2/V3 values. + + """ + tdd_xyref = {1: [2048, 3072], 2:[2048, 1024]} + def updateWCS(cls, ext_wcs, ref_wcs): + """ + recomputes the basic WCS kw + """ + logger.info("\n\tStarting MakeWCS: %s" % time.asctime()) + if not ext_wcs.idcmodel: + logger.info("IDC model not found, turning off Makewcs") + return {} + ltvoff, offshift = cls.getOffsets(ext_wcs) + + v23_corr = cls.zero_point_corr(ext_wcs) + rv23_corr = cls.zero_point_corr(ref_wcs) + + cls.uprefwcs(ext_wcs, ref_wcs, rv23_corr, ltvoff, offshift) + cls.upextwcs(ext_wcs, ref_wcs, v23_corr, rv23_corr, ltvoff, offshift) + + kw2update = {'CD1_1': ext_wcs.wcs.cd[0,0], + 'CD1_2': ext_wcs.wcs.cd[0,1], + 'CD2_1': ext_wcs.wcs.cd[1,0], + 'CD2_2': ext_wcs.wcs.cd[1,1], + 'CRVAL1': ext_wcs.wcs.crval[0], + 'CRVAL2': ext_wcs.wcs.crval[1], + 'CRPIX1': ext_wcs.wcs.crpix[0], + 'CRPIX2': ext_wcs.wcs.crpix[1], + 'IDCTAB': ext_wcs.idctab, + 'OCX10' : ext_wcs.idcmodel.cx[1,0], + 'OCX11' : ext_wcs.idcmodel.cx[1,1], + 'OCY10' : ext_wcs.idcmodel.cy[1,0], + 'OCY11' : ext_wcs.idcmodel.cy[1,1] + } + return kw2update + + updateWCS = classmethod(updateWCS) + + def upextwcs(cls, ext_wcs, ref_wcs, v23_corr, rv23_corr, loff, offsh): + """ + updates an extension wcs + """ + ltvoffx, ltvoffy = loff[0], loff[1] + offshiftx, offshifty = offsh[0], offsh[1] + ltv1 = ext_wcs.ltv1 + ltv2 = ext_wcs.ltv2 + if ltv1 != 0. or ltv2 != 0.: + offsetx = ext_wcs.wcs.crpix[0] - ltv1 - ext_wcs.idcmodel.refpix['XREF'] + offsety = ext_wcs.wcs.crpix[1] - ltv2 - ext_wcs.idcmodel.refpix['YREF'] + ext_wcs.idcmodel.shift(offsetx,offsety) + + fx, fy = ext_wcs.idcmodel.cx, ext_wcs.idcmodel.cy + + ext_wcs.setPscale() + tddscale = (ref_wcs.pscale/fx[1,1]) + v2 = ext_wcs.idcmodel.refpix['V2REF'] + v23_corr[0,0] * tddscale + v3 = ext_wcs.idcmodel.refpix['V3REF'] - v23_corr[1,0] * tddscale + v2ref = ref_wcs.idcmodel.refpix['V2REF'] + rv23_corr[0,0] * tddscale + v3ref = ref_wcs.idcmodel.refpix['V3REF'] - rv23_corr[1,0] * tddscale + + R_scale = ref_wcs.idcmodel.refpix['PSCALE']/3600.0 + off = sqrt((v2-v2ref)**2 + (v3-v3ref)**2)/(R_scale*3600.0) + + if v3 == v3ref: + theta=0.0 + else: + theta = atan2(ext_wcs.parity[0][0]*(v2-v2ref), ext_wcs.parity[1][1]*(v3-v3ref)) + + if ref_wcs.idcmodel.refpix['THETA']: theta += ref_wcs.idcmodel.refpix['THETA']*pi/180.0 + + dX=(off*sin(theta)) + offshiftx + dY=(off*cos(theta)) + offshifty + + px = np.array([[dX,dY]]) + newcrval = ref_wcs.wcs.p2s(px, 1)['world'][0] + newcrpix = np.array([ext_wcs.idcmodel.refpix['XREF'] + ltvoffx, + ext_wcs.idcmodel.refpix['YREF'] + ltvoffy]) + ext_wcs.wcs.crval = newcrval + ext_wcs.wcs.crpix = newcrpix + ext_wcs.wcs.set() + + # Create a small vector, in reference image pixel scale + delmat = np.array([[fx[1,1], fy[1,1]], \ + [fx[1,0], fy[1,0]]]) / R_scale/3600. + + # Account for subarray offset + # Angle of chip relative to chip + if ext_wcs.idcmodel.refpix['THETA']: + dtheta = ext_wcs.idcmodel.refpix['THETA'] - ref_wcs.idcmodel.refpix['THETA'] + else: + dtheta = 0.0 + + rrmat = fileutil.buildRotMatrix(dtheta) + # Rotate the vectors + dxy = np.dot(delmat, rrmat) + wc = ref_wcs.wcs.p2s((px + dxy), 1)['world'] + + # Calculate the new CDs and convert to degrees + cd11 = utils.diff_angles(wc[0,0],newcrval[0])*cos(newcrval[1]*pi/180.0) + cd12 = utils.diff_angles(wc[1,0],newcrval[0])*cos(newcrval[1]*pi/180.0) + cd21 = utils.diff_angles(wc[0,1],newcrval[1]) + cd22 = utils.diff_angles(wc[1,1],newcrval[1]) + cd = np.array([[cd11, cd12], [cd21, cd22]]) + ext_wcs.wcs.cd = cd + ext_wcs.wcs.set() + + upextwcs = classmethod(upextwcs) + + def uprefwcs(cls, ext_wcs, ref_wcs, rv23_corr_tdd, loff, offsh): + """ + Updates the reference chip + """ + ltvoffx, ltvoffy = loff[0], loff[1] + ltv1 = ref_wcs.ltv1 + ltv2 = ref_wcs.ltv2 + if ref_wcs.ltv1 != 0. or ref_wcs.ltv2 != 0.: + offsetx = ref_wcs.wcs.crpix[0] - ltv1 - ref_wcs.idcmodel.refpix['XREF'] + offsety = ref_wcs.wcs.crpix[1] - ltv2 - ref_wcs.idcmodel.refpix['YREF'] + ref_wcs.idcmodel.shift(offsetx,offsety) + + rfx, rfy = ref_wcs.idcmodel.cx, ref_wcs.idcmodel.cy + + offshift = offsh + dec = ref_wcs.wcs.crval[1] + tddscale = (ref_wcs.pscale/ref_wcs.idcmodel.cx[1,1]) + rv23 = [ref_wcs.idcmodel.refpix['V2REF'] + (rv23_corr_tdd[0,0] *tddscale), + ref_wcs.idcmodel.refpix['V3REF'] - (rv23_corr_tdd[1,0] * tddscale)] + # Get an approximate reference position on the sky + rref = np.array([[ref_wcs.idcmodel.refpix['XREF']+ltvoffx , + ref_wcs.idcmodel.refpix['YREF']+ltvoffy]]) + + crval = ref_wcs.wcs.p2s(rref, 1)['world'][0] + # Convert the PA_V3 orientation to the orientation at the aperture + # This is for the reference chip only - we use this for the + # reference tangent plane definition + # It has the same orientation as the reference chip + pv = troll(ext_wcs.pav3,dec,rv23[0], rv23[1]) + # Add the chip rotation angle + if ref_wcs.idcmodel.refpix['THETA']: + pv += ref_wcs.idcmodel.refpix['THETA'] + + + # Set values for the rest of the reference WCS + ref_wcs.wcs.crval = crval + ref_wcs.wcs.crpix = np.array([0.0,0.0])+offsh + parity = ref_wcs.parity + R_scale = ref_wcs.idcmodel.refpix['PSCALE']/3600.0 + cd11 = parity[0][0] * cos(pv*pi/180.0)*R_scale + cd12 = parity[0][0] * -sin(pv*pi/180.0)*R_scale + cd21 = parity[1][1] * sin(pv*pi/180.0)*R_scale + cd22 = parity[1][1] * cos(pv*pi/180.0)*R_scale + + rcd = np.array([[cd11, cd12], [cd21, cd22]]) + ref_wcs.wcs.cd = rcd + ref_wcs.wcs.set() + + uprefwcs = classmethod(uprefwcs) + + def zero_point_corr(cls,hwcs): + if hwcs.idcmodel.refpix['skew_coeffs'] is not None and 'TDD_CY_BETA' in hwcs.idcmodel.refpix['skew_coeffs']: + v23_corr = np.array([[0.],[0.]]) + return v23_corr + else: + try: + alpha = hwcs.idcmodel.refpix['TDDALPHA'] + beta = hwcs.idcmodel.refpix['TDDBETA'] + except KeyError: + alpha = 0.0 + beta = 0.0 + v23_corr = np.array([[0.],[0.]]) + logger.debug("\n\tTDD Zero point correction for chip %s defaulted to: %s" % (hwcs.chip, v23_corr)) + return v23_corr + + tdd = np.array([[beta, alpha], [alpha, -beta]]) + mrotp = fileutil.buildRotMatrix(2.234529)/2048. + xy0 = np.array([[cls.tdd_xyref[hwcs.chip][0]-2048.], [cls.tdd_xyref[hwcs.chip][1]-2048.]]) + v23_corr = np.dot(mrotp,np.dot(tdd,xy0)) * 0.05 + logger.debug("\n\tTDD Zero point correction for chip %s: %s" % (hwcs.chip, v23_corr)) + return v23_corr + + zero_point_corr = classmethod(zero_point_corr) + + def getOffsets(cls, ext_wcs): + ltv1 = ext_wcs.ltv1 + ltv2 = ext_wcs.ltv2 + + offsetx = ext_wcs.wcs.crpix[0] - ltv1 - ext_wcs.idcmodel.refpix['XREF'] + offsety = ext_wcs.wcs.crpix[1] - ltv2 - ext_wcs.idcmodel.refpix['YREF'] + + shiftx = ext_wcs.idcmodel.refpix['XREF'] + ltv1 + shifty = ext_wcs.idcmodel.refpix['YREF'] + ltv2 + if ltv1 != 0. or ltv2 != 0.: + ltvoffx = ltv1 + offsetx + ltvoffy = ltv2 + offsety + offshiftx = offsetx + shiftx + offshifty = offsety + shifty + else: + ltvoffx = 0. + ltvoffy = 0. + offshiftx = 0. + offshifty = 0. + + ltvoff = np.array([ltvoffx, ltvoffy]) + offshift = np.array([offshiftx, offshifty]) + return ltvoff, offshift + + getOffsets = classmethod(getOffsets) + + +def troll(roll, dec, v2, v3): + """ Computes the roll angle at the target position based on: + the roll angle at the V1 axis(roll), + the dec of the target(dec), and + the V2/V3 position of the aperture (v2,v3) in arcseconds. + + Based on algorithm provided by Colin Cox and used in + Generic Conversion at STScI. + """ + # Convert all angles to radians + _roll = np.deg2rad(roll) + _dec = np.deg2rad(dec) + _v2 = np.deg2rad(v2 / 3600.) + _v3 = np.deg2rad(v3 / 3600.) + + # compute components + sin_rho = sqrt((pow(sin(_v2),2)+pow(sin(_v3),2)) - (pow(sin(_v2),2)*pow(sin(_v3),2))) + rho = asin(sin_rho) + beta = asin(sin(_v3)/sin_rho) + if _v2 < 0: beta = pi - beta + gamma = asin(sin(_v2)/sin_rho) + if _v3 < 0: gamma = pi - gamma + A = pi/2. + _roll - beta + B = atan2( sin(A)*cos(_dec), (sin(_dec)*sin_rho - cos(_dec)*cos(rho)*cos(A))) + + # compute final value + troll = np.rad2deg(pi - (gamma+B)) + + return troll |