1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
import numpy as np
import pywcs
import pyfits
from hstwcs import wcsutil
from numpy import sqrt, arctan2
def output_wcs(list_of_wcsobj, ref_wcs=None, outwcs=None):
fra_dec = np.vstack([w.footprint for w in list_of_wcsobj])
"""
ra_min = np.array(fra_dec[:,0]).min()
dec_min = np.array(fra_dec[:,1]).min()
ra_max = np.array(fra_dec[:,0]).max()
dec_max = np.array(fra_dec[:,1]).max()
output_footprint=np.zeros(shape=(4,2),dtype=np.float64)
output_footprint[0,0]=ra_min
output_footprint[0,1]=dec_min
output_footprint[1,0]=ra_min
output_footprint[1,1]=dec_max
output_footprint[2,0]=ra_max
output_footprint[2,1]=dec_max
output_footprint[3,0]=ra_max
output_footprint[3,1]=dec_min
"""
if outwcs is None:
if ref_wcs == None:
ref_wcs = list_of_wcsobj[0]
outwcs = undistortWCS(ref_wcs)
outwcs.wcs.crpix = ref_wcs.wcs.crpix
outwcs.wcs.crval = ref_wcs.wcs.crval
outwcs.pscale = sqrt(outwcs.wcs.cd[0,0]**2 + outwcs.wcs.cd[1,0]**2)*3600.
outwcs.orientat = arctan2(outwcs.wcs.cd[0,1],outwcs.wcs.cd[1,1]) * 180./np.pi
else:
outwcs.pscale = sqrt(outwcs.wcs.cd[0,0]**2 + outwcs.wcs.cd[1,0]**2)*3600.
outwcs.orientat = arctan2(outwcs.wcs.cd[0,1],outwcs.wcs.cd[1,1]) * 180./np.pi
#out_px = outwcs.wcs.s2p_fits(output_footprint)['pixcrd']
out_px = outwcs.wcs.s2p_fits(fra_dec)['pixcrd']
outwcs.naxis1 = int(np.ceil(out_px[:,0].max()) - np.floor(out_px[:,0].min()))
outwcs.naxis2 = int(np.ceil(out_px[:,1].max()) - np.floor(out_px[:,1].min()))
outwcs.recenter()
return outwcs
def undistortWCS(wcsobj):
assert isinstance(wcsobj, pywcs.WCS)
#if wcsobj.idcmodel == None:
# return
# get the sip coefficients and the first order IDC coeffs
# reconstruct the idc model
# apply the idc model
from hstwcs.distortion import coeff_converter
cx, cy = coeff_converter.sip2idc(wcsobj)
crpix1 = wcsobj.wcs.crpix[0]
crpix2 = wcsobj.wcs.crpix[1]
xy = np.array([(crpix1,crpix2),(crpix1+1.,crpix2),(crpix1,crpix2+1.)],dtype=np.double)
offsets = np.array([wcsobj.ltv1, wcsobj.ltv2])
px = xy + offsets
order = wcsobj.sip.a_order
pscale = wcsobj.idcscale
#pixref = np.array([wcsobj.sip.SIPREF1, wcsobj.sip.SIPREF2])
tan_pix = apply_idc(px, cx, cy, wcsobj.wcs.crpix, pscale, order)
xc = tan_pix[:,0]
yc = tan_pix[:,1]
am = xc[1] - xc[0]
bm = xc[2] - xc[0]
cm = yc[1] - yc[0]
dm = yc[2] - yc[0]
cd_mat = np.array([[am,bm],[cm,dm]],dtype=np.double)
# Check the determinant for singularity
_det = (am * dm) - (bm * cm)
if ( _det == 0.0):
print 'Singular matrix in updateWCS, aborting ...'
return
#lin_wcsobj = wcsutil.HSTWCS(instrument=wcsobj.instrument)
lin_wcsobj = pywcs.WCS() #instrument=wcsobj.instrument)
cd_inv = np.linalg.inv(cd_mat)
print 'inv_cd', cd_inv
lin_wcsobj.wcs.cd = np.dot(wcsobj.wcs.cd, cd_inv)
lin_wcsobj.orientat = arctan2(lin_wcsobj.wcs.cd[0,1],lin_wcsobj.wcs.cd[1,1]) * 180./np.pi
lin_wcsobj.pscale = sqrt(lin_wcsobj.wcs.cd[0,0]**2 + lin_wcsobj.wcs.cd[1,0]**2)*3600.
return lin_wcsobj
def apply_idc(pixpos, cx, cy, pixref, pscale= None, order=None):
#pixpos must be already corrected for ltv1/2
if cx == None:
return pixpos
if order is None:
print 'Unknown order of distortion model \n'
return pixpos
if pscale is None:
print 'Unknown model plate scale\n'
return pixpos
# Apply in the same way that 'drizzle' would...
_cx = cx/pscale
_cy = cy/ pscale
_p = pixpos
# Do NOT include any zero-point terms in CX,CY here
# as they should not be scaled by plate-scale like rest
# of coeffs... This makes the computations consistent
# with 'drizzle'. WJH 17-Feb-2004
_cx[0,0] = 0.
_cy[0,0] = 0.
dxy = _p - pixref
# Apply coefficients from distortion model here...
c = _p * 0.
for i in range(order+1):
for j in range(i+1):
c[:,0] = c[:,0] + _cx[i][j] * pow(dxy[:,0],j) * pow(dxy[:,1],(i-j))
c[:,1] = c[:,1] + _cy[i][j] * pow(dxy[:,0],j) * pow(dxy[:,1],(i-j))
return c
def sip2idc(wcs):
"""
Converts SIP style coefficients to IDCTAB coefficients.
:Parameters:
`wcs`: pyfits.Header or pywcs.WCS object
"""
if isinstance(wcs,pyfits.Header):
ocx10 = wcs.get('OCX10', None)
ocx11 = wcs.get('OCX11', None)
ocy10 = wcs.get('OCY10', None)
ocy11 = wcs.get('OCY11', None)
order = hdr.get('A_ORDER', None)
sipa, sipb = read_sip_kw(header)
if sipa == None or sipb == None:
print 'SIP coefficients are not available.\n'
print 'Cannot convert SIP to IDC coefficients.\n'
return
elif isinstance(wcs,pywcs.WCS):
try:
ocx10 = wcs.ocx10
ocx11 = wcs.ocx11
ocy10 = wcs.ocy10
ocy11 = wcs.ocy11
except AttributeError:
print 'First order IDCTAB coefficients are not available.\n'
print 'Cannot convert SIP to IDC coefficients.\n'
return
try:
sipa = wcs.sip.a
sipb = wcs.sip.b
except AttributeError:
print 'SIP coefficients are not available.\n'
print 'Cannot convert SIP to IDC coefficients.\n'
return
else:
print 'Input to sip2idc must be a PyFITS header or a wcsutil.HSTWCS object\n'
return
try:
order = wcs.sip.a_order
except AttributeError:
print 'SIP model order unknown, exiting ...\n'
return
if None in [ocx10, ocx11, ocy10, ocy11]:
print 'First order IDC coefficients not found, exiting ...\n'
return
idc_coeff = np.array([[ocx11, ocx10], [ocy11, ocy10]])
cx = np.zeros((order+1,order+1), dtype=np.double)
cy = np.zeros((order+1,order+1), dtype=np.double)
for n in range(order+1):
for m in range(order+1):
if n >= m and n>=2:
sipval = np.array([[sipa[m,n-m]],[sipb[m,n-m]]])
idcval = np.dot(idc_coeff, sipval)
cx[n,m] = idcval[0]
cy[n,m] = idcval[1]
cx[1,0] = ocx10
cx[1,1] = ocx11
cy[1,0] = ocy10
cy[1,1] = ocy11
return cx, cy
def read_sip_kw(header):
"""
Reads SIP header keywords and returns an array of coefficients.
If no SIP header keywords are found, None is returned.
"""
if header.has_key("A_ORDER"):
if not header.has_key("B_ORDER"):
raise ValueError(
"A_ORDER provided without corresponding B_ORDER "
"keyword for SIP distortion")
m = int(header["A_ORDER"])
a = np.zeros((m+1, m+1), np.double)
for i in range(m+1):
for j in range(m-i+1):
a[i, j] = header.get("A_%d_%d" % (i, j), 0.0)
m = int(header["B_ORDER"])
b = np.zeros((m+1, m+1), np.double)
for i in range(m+1):
for j in range(m-i+1):
b[i, j] = header.get("B_%d_%d" % (i, j), 0.0)
elif header.has_key("B_ORDER"):
raise ValueError(
"B_ORDER provided without corresponding A_ORDER "
"keyword for SIP distortion")
else:
a = None
b = None
return a , b
|