summaryrefslogtreecommitdiff
path: root/lib/stwcs/distortion/models.py
blob: 3e7d2b4071271e0d2815c90aa354769814c2c3c5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
from __future__ import division # confidence high

import types
# Import PyDrizzle utility modules
import mutil
import numpy as np
import mutil
from mutil import combin

yes = True
no = False

#################
#
#
#               Geometry/Distortion Classes
#
#
#################

class GeometryModel:
    """
    Base class for Distortion model.
    There will be a separate class for each type of
    model/filetype used with drizzle, i.e., IDCModel and
    DrizzleModel.

    Each class will know how to apply the distortion to a
    single point and how to convert coefficients to an input table
    suitable for the drizzle task.

    Coefficients will be stored in CX,CY arrays.
    """
    #
    #
    #
    #
    #
    #
    #
    NORDER = 3

    def __init__(self):
        "  This will open the given file and determine its type and norder."

        #       Method to read in coefficients from given table and
        #       populate the n arrays 'cx' and 'cy'.
        #       This will be different for each type of input file,
        #       IDCTAB vs. drizzle table.

        # Set these up here for all sub-classes to use...
        # But, calculate norder and cx,cy arrays in detector specific classes.
        self.cx = None
        self.cy = None
        self.refpix = None
        self.norder = self.NORDER
        # Keep track of computed zero-point for distortion coeffs
        self.x0 = None
        self.y0 = None

        # default values for these attributes
        self.direction = 'forward'

        self.pscale = 1.0

    def shift(self, xs, ys):
        """
        Shift reference position of coefficients to new center
        where (xs,ys) = old-reference-position - subarray/image center.
        This will support creating coeffs files for drizzle which will
        be applied relative to the center of the image, rather than relative
        to the reference position of the chip.
        """

        _cxs = np.zeros(shape=self.cx.shape,dtype=self.cx.dtype)
        _cys = np.zeros(shape=self.cy.shape,dtype=self.cy.dtype)
        _k = self.norder + 1
        # loop over each input coefficient
        for m in xrange(_k):
            for n in xrange(_k):
                if m >= n:
                    # For this coefficient, shift by xs/ys.
                    _ilist = range(m, _k)
                    # sum from m to k
                    for i in _ilist:
                        _jlist = range(n, i - (m-n)+1)
                        # sum from n to i-(m-n)
                        for j in _jlist:
                            _cxs[m,n] += self.cx[i,j]*combin(j,n)*combin((i-j),(m-n))*pow(xs,(j-n))*pow(ys,((i-j)-(m-n)))
                            _cys[m,n] += self.cy[i,j]*combin(j,n)*combin((i-j),(m-n))*pow(xs,(j-n))*pow(ys,((i-j)-(m-n)))
        self.cx = _cxs.copy()
        self.cy = _cys.copy()

    def convert(self, tmpname, xref=None,yref=None,delta=yes):
        """
         Open up an ASCII file, output coefficients in drizzle
          format after converting them as necessary.
        First, normalize these coefficients to what drizzle expects
        Normalize the coefficients by the MODEL/output plate scale.

        16-May-2002:
        Revised to work with higher order polynomials by John Blakeslee.
        27-June-2002:
            Added ability to shift coefficients to new center for support
                of subarrays.
        """
        cx = self.cx/self.pscale
        cy = self.cy/self.pscale
        x0 = self.refpix['XDELTA'] + cx[0,0]
        y0 = self.refpix['YDELTA'] + cy[0,0]
        #xr = self.refpix['XREF']
        #yr = self.refpix['YREF']
        xr = self.refpix['CHIP_XREF']
        yr = self.refpix['CHIP_YREF']



        '''
        if xref != None:
            # Shift coefficients for use with drizzle
            _xs = xref - self.refpix['XREF'] + 1.0
            _ys = yref - self.refpix['YREF'] + 1.0


            if _xs != 0 or _ys != 0:
                cxs,cys= self.shift(cx, cy, _xs, _ys)
                cx = cxs
                cy = cys

                # We only want to apply this shift to coeffs
                # for subarray images.
                if delta == no:
                    cxs[0,0] = cxs[0,0] - _xs
                    cys[0,0] = cys[0,0] - _ys

                # Now, apply only the difference introduced by the distortion..
                # i.e., (undistorted - original) shift.
                x0 += cxs[0,0]
                y0 += cys[0,0]
        '''
        self.x0 = x0 #+ 1.0
        self.y0 = y0 #+ 1.0

        # Now, write out the coefficients into an ASCII
        # file in 'drizzle' format.
        lines = []


        lines.append('# Polynomial distortion coefficients\n')
        lines.append('# Extracted from "%s" \n'%self.name)
        lines.append('refpix %f %f \n'%(xr,yr))
        if self.norder==3:
            lines.append('cubic\n')
        elif self.norder==4:
            lines.append('quartic\n')
        elif self.norder==5:
            lines.append('quintic\n')
        else:
            raise ValueError, "Drizzle cannot handle poly distortions of order %d"%self.norder

        str = '%16.8f %16.8g %16.8g %16.8g %16.8g \n'% (x0,cx[1,1],cx[1,0],cx[2,2],cx[2,1])
        lines.append(str)
        str = '%16.8g %16.8g %16.8g %16.8g %16.8g \n'% (cx[2,0],cx[3,3],cx[3,2],cx[3,1],cx[3,0])
        lines.append(str)
        if self.norder>3:
            str = '%16.8g %16.8g %16.8g %16.8g %16.8g \n'% (cx[4,4],cx[4,3],cx[4,2],cx[4,1],cx[4,0])
            lines.append(str)
        if self.norder>4:
            str = '%16.8g %16.8g %16.8g %16.8g %16.8g %16.8g \n'% (cx[5,5],cx[5,4],cx[5,3],cx[5,2],cx[5,1],cx[5,0])
            lines.append(str)
        lines.append("\n")

        str = '%16.8f %16.8g %16.8g %16.8g %16.8g \n'% (y0,cy[1,1],cy[1,0],cy[2,2],cy[2,1])
        lines.append(str)
        str = '%16.8g %16.8g %16.8g %16.8g %16.8g \n'% (cy[2,0],cy[3,3],cy[3,2],cy[3,1],cy[3,0])
        lines.append(str)
        if self.norder>3:
            str = '%16.8g %16.8g %16.8g %16.8g %16.8g \n'% (cy[4,4],cy[4,3],cy[4,2],cy[4,1],cy[4,0])
            lines.append(str)
        if self.norder>4:
            str = '%16.8g %16.8g %16.8g %16.8g %16.8g %16.8g \n'% (cy[5,5],cy[5,4],cy[5,3],cy[5,2],cy[5,1],cy[5,0])
            lines.append(str)

        output = open(tmpname,'w')
        output.writelines(lines)
        output.close()


    def apply(self, pixpos,scale=1.0,order=None):
        """
         Apply coefficients to a pixel position or a list of positions.
          This should be the same for all coefficients tables.
        Return the geometrically-adjusted position
        in arcseconds from the reference position as a tuple (x,y).

        Compute delta from reference position
        """
        
        """
        scale actually is a ratio of pscale/self.model.pscale
        what is pscale?
        """
        if self.cx == None:
            return pixpos[:,0],pixpos[:,1]

        if order is None:
            order = self.norder

        # Apply in the same way that 'drizzle' would...
        _cx = self.cx / (self.pscale * scale)
        _cy = self.cy / (self.pscale * scale)
        _convert = no
        _p = pixpos

        # Do NOT include any zero-point terms in CX,CY here
        # as they should not be scaled by plate-scale like rest
        # of coeffs...  This makes the computations consistent
        # with 'drizzle'.  WJH 17-Feb-2004
        _cx[0,0] = 0.
        _cy[0,0] = 0.

        if isinstance(_p,types.ListType) or isinstance(_p,types.TupleType):
            _p = np.array(_p,dtype=np.float64)
            _convert = yes

        dxy = _p - (self.refpix['XREF'],self.refpix['YREF'])
        # Apply coefficients from distortion model here...
        c = _p * 0.
        for i in range(order+1):
            for j in range(i+1):
                c[:,0] = c[:,0] + _cx[i][j] * pow(dxy[:,0],j) * pow(dxy[:,1],(i-j))
                c[:,1] = c[:,1] + _cy[i][j] * pow(dxy[:,0],j) * pow(dxy[:,1],(i-j))
        xc = c[:,0]
        yc = c[:,1]

        # Convert results back to same form as original input
        if _convert:
            xc = xc.tolist()
            yc = yc.tolist()
            # If a single tuple was input, return just a single tuple
            if len(xc) == 1:
                xc = xc[0]
                yc = yc[0]

        return xc,yc

    def setPScaleCoeffs(self,pscale):
        self.cx[1,1] = pscale
        self.cy[1,0] = pscale

        self.refpix['PSCALE'] = pscale
        self.pscale = pscale


class IDCModel(GeometryModel):
    """
    This class will open the IDCTAB, select proper row based on
    chip/direction and populate cx,cy arrays.
    We also need to read in SCALE, XCOM,YCOM, XREF,YREF as well.
    """
    def __init__(self, idcfile, date=None, chip=1, direction='forward',
                filter1='CLEAR1',filter2='CLEAR2',offtab=None,  binned=1):
        GeometryModel.__init__(self)
        #
        # Norder must be derived from the coeffs file itself,
        # then the arrays can be setup. Thus, it needs to be
        # done in the sub-class, not in the base class.
        # Read in table.
        # Populate cx,cy,scale, and other variables here.
        #
        self.name = idcfile
        self.cx,self.cy,self.refpix,self.norder = mutil.readIDCtab(idcfile,
                        chip=chip,direction=direction,filter1=filter1,filter2=filter2,
                date=date, offtab=offtab)

        if 'empty_model' in self.refpix and self.refpix['empty_model']:
            pass
        else:
            self.refpix['PSCALE'] = self.refpix['PSCALE'] * binned
            self.cx = self.cx * binned
            self.cy = self.cy * binned
            self.refpix['XREF'] = self.refpix['XREF'] / binned
            self.refpix['YREF'] = self.refpix['YREF'] / binned
            self.refpix['XSIZE'] = self.refpix['XSIZE'] / binned
            self.refpix['YSIZE'] = self.refpix['YSIZE'] / binned

        self.pscale = self.refpix['PSCALE']
        

class WCSModel(GeometryModel):
    """
    This class sets up a distortion model based on coefficients
    found in the image header.
    """
    def __init__(self,header,rootname):
        GeometryModel.__init__(self)


        if 'rootname' in header:
            self.name = header['rootname']
        else:
            self.name = rootname
        # Initialize all necessary distortion arrays with
        # default model...
        #self.cx,self.cy,self.refpix,self.order = mutil.defaultModel()

        # Read in values from header, and update distortion arrays.
        self.cx,self.cy,self.refpix,self.norder = mutil.readWCSCoeffs(header)

        self.pscale = self.refpix['PSCALE']



class DrizzleModel(GeometryModel):
    """
    This class will read in an ASCII Cubic
    drizzle coeffs file and populate the cx,cy arrays.
    """

    def __init__(self, idcfile, scale = None):
        GeometryModel.__init__(self)
        #
        # We now need to read in the file, populate cx,cy, and
        # other variables as necessary.
        #
        self.name = idcfile
        self.cx,self.cy,self.refpix,self.norder = mutil.readCubicTable(idcfile)

        # scale is the ratio wcs.pscale/model.pscale. 
        # model.pscale for WFPC2 is passed from REFDATA.
        # This is needed for WFPC2 binned data.
        
        if scale != None:
            self.pscale = scale
        else:
            self.pscale = self.refpix['PSCALE']

        """
        The above definition looks wrong.
        In one case it's a ratio in the other it's pscale.
        
        """

class TraugerModel(GeometryModel):
    """
    This class will read in the ASCII Trauger coeffs
    file, convert them to SIAF coefficients, then populate
    the cx,cy arrays.
    """
    NORDER = 3

    def __init__(self, idcfile,lam):
        GeometryModel.__init__(self)
        self.name = idcfile
        self.cx,self.cy,self.refpix,self.norder = mutil.readTraugerTable(idcfile,lam)
        self.pscale = self.refpix['PSCALE']
        #
        # Read in file here.
        # Populate cx,cy, and other variables.
        #