1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
|
from __future__ import division # confidence high
import os.path
from pywcs import WCS
import pyfits
import instruments
from stwcs.distortion import models, coeff_converter
import altwcs
import numpy as np
from stsci.tools import fileutil
from stsci.tools.fileutil import DEGTORAD, RADTODEG
import getinput
import mappings
from mappings import inst_mappings, ins_spec_kw
from mappings import basic_wcs
__docformat__ = 'restructuredtext'
class HSTWCS(WCS):
def __init__(self, fobj=None, ext=None, minerr=0.0, wcskey=" "):
"""
Create a WCS object based on the instrument.
In addition to basic WCS keywords this class provides
instrument specific information needed in distortion computation.
Parameters
----------
fobj: string or PyFITS HDUList object or None
a file name, e.g j9irw4b1q_flt.fits
a fully qualified filename[EXTNAME,EXTNUM], e.g. j9irw4b1q_flt.fits[sci,1]
a pyfits file object, e.g pyfits.open('j9irw4b1q_flt.fits'), in which case the
user is responsible for closing the file object.
ext: int or None
extension number
if ext==None, it is assumed the data is in the primary hdu
minerr: float
minimum value a distortion correction must have in order to be applied.
If CPERRja, CQERRja are smaller than minerr, the corersponding
distortion is not applied.
wcskey: str
A one character A-Z or " " used to retrieve and define an
alternate WCS description.
"""
self.inst_kw = ins_spec_kw
self.minerr = minerr
self.wcskey = wcskey
if fobj is not None:
filename, hdr0, ehdr, phdu = getinput.parseSingleInput(f=fobj,
ext=ext)
self.filename = filename
instrument_name = hdr0.get('INSTRUME', 'DEFAULT')
if instrument_name in ['IRAF/ARTDATA','',' ','N/A']:
self.instrument = 'DEFAULT'
else:
self.instrument = instrument_name
WCS.__init__(self, ehdr, fobj=phdu, minerr=self.minerr,
key=self.wcskey)
# If input was a pyfits HDUList object, it's the user's
# responsibility to close it, otherwise, it's closed here.
if not isinstance(fobj, pyfits.HDUList):
phdu.close()
self.setInstrSpecKw(hdr0, ehdr)
self.readIDCCoeffs(ehdr)
extname = ehdr.get('EXTNAME', '')
extnum = ehdr.get('EXTVER', None)
self.extname = (extname, extnum)
else:
# create a default HSTWCS object
self.instrument = 'DEFAULT'
WCS.__init__(self, minerr=self.minerr, key=self.wcskey)
self.pc2cd()
self.setInstrSpecKw()
self.setPscale()
self.setOrient()
def readIDCCoeffs(self, header):
"""
Reads in first order IDCTAB coefficients if present in the header
"""
coeffs = ['ocx10', 'ocx11', 'ocy10', 'ocy11', 'idcscale']
for c in coeffs:
self.__setattr__(c, header.get(c, None))
def setInstrSpecKw(self, prim_hdr=None, ext_hdr=None):
"""
Populate the instrument specific attributes:
These can be in different headers but each instrument class has knowledge
of where to look for them.
Parameters
----------
prim_hdr: pyfits.Header
primary header
ext_hdr: pyfits.Header
extension header
"""
if self.instrument in inst_mappings.keys():
inst_kl = inst_mappings[self.instrument]
inst_kl = instruments.__dict__[inst_kl]
insobj = inst_kl(prim_hdr, ext_hdr)
for key in self.inst_kw:
try:
self.__setattr__(key, insobj.__getattribute__(key))
except AttributeError:
# Some of the instrument's attributes are recorded in the primary header and
# were already set, (e.g. 'DETECTOR'), the code below is a check for that case.
if not self.__getattribute__(key):
raise
else:
pass
else:
raise KeyError, "Unsupported instrument - %s" %self.instrument
def setPscale(self):
"""
Calculates the plate scale from the CD matrix
"""
try:
cd11 = self.wcs.cd[0][0]
cd21 = self.wcs.cd[1][0]
self.pscale = np.sqrt(np.power(cd11,2)+np.power(cd21,2)) * 3600.
except AttributeError:
print "This file has a PC matrix. You may want to convert it \n \
to a CD matrix, if reasonable, by running pc2.cd() method.\n \
The plate scale can be set then by calling setPscale() method.\n"
self.pscale = None
def setOrient(self):
"""
Computes ORIENTAT from the CD matrix
"""
try:
cd12 = self.wcs.cd[0][1]
cd22 = self.wcs.cd[1][1]
self.orientat = RADTODEG(np.arctan2(cd12,cd22))
except AttributeError:
print "This file has a PC matrix. You may want to convert it \n \
to a CD matrix, if reasonable, by running pc2.cd() method.\n \
The orientation can be set then by calling setOrient() method.\n"
self.pscale = None
def updatePscale(self, scale):
"""
Updates the CD matrix with a new plate scale
"""
self.wcs.cd = self.wcs.cd/self.pscale*scale
self.setPscale()
def readModel(self, update=False, header=None):
"""
Reads distortion model from IDCTAB.
If IDCTAB is not found ('N/A', "", or not found on disk), then
if SIP coefficients and first order IDCTAB coefficients are present
in the header, restore the idcmodel from the header.
If not - assign None to self.idcmodel.
Parameters
----------
header: pyfits.Header
fits extension header
update: boolean (False)
if True - record the following IDCTAB quantities as header keywords:
CX10, CX11, CY10, CY11, IDCSCALE, IDCTHETA, IDCXREF, IDCYREF,
IDCV2REF, IDCV3REF
"""
if self.idctab in [None, '', ' ','N/A']:
#Keyword idctab is not present in header - check for sip coefficients
if header is not None and header.has_key('IDCSCALE'):
self._readModelFromHeader(header)
else:
print "Distortion model is not available: IDCTAB=None\n"
self.idcmodel = None
elif not os.path.exists(fileutil.osfn(self.idctab)):
if header is not None and header.has_key('IDCSCALE'):
self._readModelFromHeader(header)
else:
print 'Distortion model is not available: IDCTAB file %s not found\n' % self.idctab
self.idcmodel = None
else:
self.readModelFromIDCTAB(header=header, update=update)
def _readModelFromHeader(self, header):
# Recreate idc model from SIP coefficients and header kw
print 'Restoring IDC model from SIP coefficients\n'
model = models.GeometryModel()
cx, cy = coeff_converter.sip2idc(self)
model.cx = cx
model.cy = cy
model.name = "sip"
model.norder = header['A_ORDER']
refpix = {}
refpix['XREF'] = header['IDCXREF']
refpix['YREF'] = header['IDCYREF']
refpix['PSCALE'] = header['IDCSCALE']
refpix['V2REF'] = header['IDCV2REF']
refpix['V3REF'] = header['IDCV3REF']
refpix['THETA'] = header['IDCTHETA']
model.refpix = refpix
self.idcmodel = model
def readModelFromIDCTAB(self, header=None, update=False):
"""
Read distortion model from idc table.
Parameters
----------
header: pyfits.Header
fits extension header
update: boolean (False)
if True - save teh following as header keywords:
CX10, CX11, CY10, CY11, IDCSCALE, IDCTHETA, IDCXREF, IDCYREF,
IDCV2REF, IDCV3REF
"""
if self.date_obs == None:
print 'date_obs not available\n'
self.idcmodel = None
return
if self.filter1 == None and self.filter2 == None:
'No filter information available\n'
self.idcmodel = None
return
self.idcmodel = models.IDCModel(self.idctab,
chip=self.chip, direction='forward', date=self.date_obs,
filter1=self.filter1, filter2=self.filter2,
offtab=self.offtab, binned=self.binned)
if update:
if header==None:
print 'Update header with IDC model kw requested but header was not provided\n.'
else:
self._updatehdr(header)
def wcs2header(self, sip2hdr=False, idc2hdr=True):
"""
Create a pyfits.Header object from WCS keywords.
If the original header had a CD matrix, return a CD matrix,
otherwise return a PC matrix.
Parameters
----------
sip2hdr: boolean
If True - include SIP coefficients
"""
h = self.to_header()
if self.wcs.has_cd():
h = altwcs.pc2cd(h, key=self.wcskey)
if idc2hdr:
for card in self._idc2hdr():
h.update(card.key,value=card.value,comment=card.comment)
try:
del h.ascard['RESTFRQ']
del h.ascard['RESTWAV']
except KeyError: pass
if sip2hdr and self.sip:
for card in self._sip2hdr('a'):
h.update(card.key,value=card.value,comment=card.comment)
for card in self._sip2hdr('b'):
h.update(card.key,value=card.value,comment=card.comment)
try:
ap = self.sip.ap
except AssertionError:
ap = None
try:
bp = self.sip.bp
except AssertionError:
bp = None
if ap:
for card in self._sip2hdr('ap'):
h.update(card.key,value=card.value,comment=card.comment)
if bp:
for card in self._sip2hdr('bp'):
h.update(card.key,value=card.value,comment=card.comment)
return h
def _sip2hdr(self, k):
"""
Get a set of SIP coefficients in the form of an array
and turn them into a pyfits.Cardlist.
k - one of 'a', 'b', 'ap', 'bp'
"""
cards = pyfits.CardList()
korder = self.sip.__getattribute__(k+'_order')
cards.append(pyfits.Card(key=k.upper()+'_ORDER', value=korder))
coeffs = self.sip.__getattribute__(k)
ind = coeffs.nonzero()
for i in range(len(ind[0])):
card = pyfits.Card(key=k.upper()+'_'+str(ind[0][i])+'_'+str(ind[1][i]),
value=coeffs[ind[0][i], ind[1][i]])
cards.append(card)
return cards
def _idc2hdr(self):
# save some of the idc coefficients
coeffs = ['ocx10', 'ocx11', 'ocy10', 'ocy11', 'idcscale']
cards = pyfits.CardList()
for c in coeffs:
try:
val = self.__getattribute__(c)
except AttributeError:
continue
cards.append(pyfits.Card(key=c, value=val))
return cards
def pc2cd(self):
self.wcs.cd = self.wcs.pc.copy()
def all_sky2pix(self,ra,dec,origin):
"""
Performs full inverse transformation using iterative solution
on full forward transformation with complete distortion model.
NOTES
-----
We now need to find the position we want by iterative
improvement of an initial guess - the centre of the chip
The method is to derive an "effective CD matrix" and use that
to apply a correction until we are close enough (as defined by
the ERR variable)
Code from the drizzle task TRANBACK (dither$drizzle/tranback.f)
defined the algorithm for this implementation
"""
from stwcs.distortion import utils
# Define some output arrays
xout = np.zeros(len(ra),dtype=np.float64)
yout = np.zeros(len(ra),dtype=np.float64)
# ... and internal arrays
x = np.zeros(3,dtype=np.float64)
y = np.zeros(3,dtype=np.float64)
# define delta for comparison
err = 0.0001
# Use linear WCS as frame in which to perform fit
# rather than on the sky
undistort = True
if self.sip is None:
# Only apply distortion if distortion coeffs are present.
undistort = False
wcslin = utils.output_wcs([self],undistort=undistort)
# We can only transform 1 position at a time
for r,d,n in zip(ra,dec,xrange(len(ra))):
# First guess for output
x[0],y[0] = self.wcs_sky2pix(r,d,origin)
# also convert RA,Dec into undistorted linear pixel positions
lx,ly = wcslin.wcs_sky2pix(r,d,origin)
# Loop around until we are close enough (max 20 iterations)
ev_old = None
for i in xrange(20):
x[1] = x[0] + 1.0
y[1] = y[0]
x[2] = x[0]
y[2] = y[0] + 1.0
# Perform full transformation on pixel position
rao,deco = self.all_pix2sky(x,y,origin)
# convert RA,Dec into linear pixel positions for fitting
xo,yo = wcslin.wcs_sky2pix(rao,deco,origin)
# Compute deltas between output and initial guess as
# an affine transform then invert that transformation
dxymat = np.array([[xo[1]-xo[0],yo[1]-yo[0]],
[xo[2]-xo[0],yo[2]-yo[0]]],dtype=np.float64)
invmat = np.linalg.inv(dxymat)
# compute error in output position
dx = lx - xo[0]
dy = ly - yo[0]
# record the old position
xold = x[0]
yold = y[0]
# Update the initial guess position using the transform
x[0] = xold + dx*dxymat[0][0] + dy*dxymat[1][0]
y[0] = yold + dx*dxymat[0][1] + dy*dxymat[1][1]
# Work out the error vector length
ev = np.sqrt((x[0] - xold)**2 + (y[0] - yold)**2)
# initialize record of previous error measurement during 1st iteration
if ev_old is None:
ev_old = ev
# Check to see whether we have reached the limit or
# the new error is greater than error from previous iteration
if ev < err or (np.abs(ev) > np.abs(ev_old)):
break
# remember error measurement from previous iteration
ev_old = ev
xout[n] = x[0]
yout[n] = y[0]
return xout,yout
def _updatehdr(self, ext_hdr):
#kw2add : OCX10, OCX11, OCY10, OCY11
# record the model in the header for use by pydrizzle
ext_hdr.update('OCX10', self.idcmodel.cx[1,0])
ext_hdr.update('OCX11', self.idcmodel.cx[1,1])
ext_hdr.update('OCY10', self.idcmodel.cy[1,0])
ext_hdr.update('OCY11', self.idcmodel.cy[1,1])
ext_hdr.update('IDCSCALE', self.idcmodel.refpix['PSCALE'])
ext_hdr.update('IDCTHETA', self.idcmodel.refpix['THETA'])
ext_hdr.update('IDCXREF', self.idcmodel.refpix['XREF'])
ext_hdr.update('IDCYREF', self.idcmodel.refpix['YREF'])
ext_hdr.update('IDCV2REF', self.idcmodel.refpix['V2REF'])
ext_hdr.update('IDCV3REF', self.idcmodel.refpix['V3REF'])
def printwcs(self):
"""
Print the basic WCS keywords.
"""
print 'WCS Keywords\n'
print 'CD_11 CD_12: %r %r' % (self.wcs.cd[0,0], self.wcs.cd[0,1])
print 'CD_21 CD_22: %r %r' % (self.wcs.cd[1,0], self.wcs.cd[1,1])
print 'CRVAL : %r %r' % (self.wcs.crval[0], self.wcs.crval[1])
print 'CRPIX : %r %r' % (self.wcs.crpix[0], self.wcs.crpix[1])
print 'NAXIS : %d %d' % (self.naxis1, self.naxis2)
print 'Plate Scale : %r' % self.pscale
print 'ORIENTAT : %r' % self.orientat
|