1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
import datetime
import numpy
from numpy import linalg
from pytools import fileutil
from hstwcs.utils import diff_angles
import makewcs, dgeo
MakeWCS = makewcs.MakeWCS
DGEOCorr = dgeo.DGEOCorr
class TDDCorr(object):
"""
Purpose
=======
Apply time dependent distortion correction to SIP coefficients and basic
WCS keywords. It is applicable only to ACS/WFC data.
Ref: Jay Anderson, ACS ISR 2007-08, Variation of the Distortion
Solution of the WFC
:Parameters:
`ext_wcs`: HSTWCS object
An extension HSTWCS object to be modified
`ref_wcs`: HSTWCS object
A reference HSTWCS object
"""
def updateWCS(cls, ext_wcs, ref_wcs):
"""
- Calculates alpha and beta for ACS/WFC data.
- Writes 2 new kw to the extension header: TDDALPHA and TDDBETA
"""
alpha, beta = cls.compute_alpha_beta(ext_wcs)
cls.apply_tdd2idc(ref_wcs, alpha, beta)
cls.apply_tdd2idc(ext_wcs, alpha, beta)
ext_wcs.idcmodel.refpix['TDDALPHA'] = alpha
ext_wcs.idcmodel.refpix['TDDBETA'] = beta
ref_wcs.idcmodel.refpix['TDDALPHA'] = alpha
ref_wcs.idcmodel.refpix['TDDBETA'] = beta
newkw = {'TDDALPHA': alpha, 'TDDBETA':beta, 'OCX10':ext_wcs.idcmodel.cx[1,0],
'OCX11':ext_wcs.idcmodel.cx[1,1],'OCY10':ext_wcs.idcmodel.cy[1,0],
'OCY11':ext_wcs.idcmodel.cy[1,1],}
return newkw
updateWCS = classmethod(updateWCS)
def apply_tdd2idc(cls, hwcs, alpha, beta):
"""
Applies TDD to the idctab coefficients of a ACS/WFC observation.
This should be always the first correction.
"""
theta_v2v3 = 2.234529
mrotp = fileutil.buildRotMatrix(theta_v2v3)
mrotn = fileutil.buildRotMatrix(-theta_v2v3)
tdd_mat = numpy.array([[1+(beta/2048.), alpha/2048.],[alpha/2048.,1-(beta/2048.)]],numpy.float64)
abmat1 = numpy.dot(tdd_mat, mrotn)
abmat2 = numpy.dot(mrotp,abmat1)
xshape, yshape = hwcs.idcmodel.cx.shape, hwcs.idcmodel.cy.shape
icxy = numpy.dot(abmat2,[hwcs.idcmodel.cx.ravel(), hwcs.idcmodel.cy.ravel()])
hwcs.idcmodel.cx = icxy[0]
hwcs.idcmodel.cy = icxy[1]
hwcs.idcmodel.cx.shape = xshape
hwcs.idcmodel.cy.shape = yshape
apply_tdd2idc = classmethod(apply_tdd2idc)
def compute_alpha_beta(cls, ext_wcs):
"""
Compute the time dependent distortion skew terms
default date of 2004.5 = 2004-7-1
"""
dday = 2004.5
year,month,day = ext_wcs.date_obs.split('-')
rdate = datetime.datetime(int(year),int(month),int(day))
rday = float(rdate.strftime("%j"))/365.25 + rdate.year
alpha = 0.095 + 0.090*(rday-dday)/2.5
beta = -0.029 - 0.030*(rday-dday)/2.5
return alpha, beta
compute_alpha_beta = classmethod(compute_alpha_beta)
class VACorr(object):
"""
Purpose
=======
Apply velocity aberation correction to WCS keywords.
Modifies the CD matrix and CRVAL1/2
"""
def updateWCS(cls, ext_wcs, ref_wcs):
if ext_wcs.vafactor != 1:
ext_wcs.wcs.cd = ext_wcs.wcs.cd * ext_wcs.vafactor
ext_wcs.wcs.crval[0] = ref_wcs.wcs.crval[0] + ext_wcs.vafactor*diff_angles(ext_wcs.wcs.crval[0], ref_wcs.wcs.crval[0])
ext_wcs.wcs.crval[1] = ref_wcs.wcs.crval[1] + ext_wcs.vafactor*diff_angles(ext_wcs.wcs.crval[1], ref_wcs.wcs.crval[1])
ext_wcs.wcs.set()
kw2update={'CD1_1': ext_wcs.wcs.cd[0,0], 'CD1_2':ext_wcs.wcs.cd[0,1],
'CD2_1':ext_wcs.wcs.cd[1,0], 'CD2_2':ext_wcs.wcs.cd[1,1],
'CRVAL1':ext_wcs.wcs.crval[0], 'CRVAL2':ext_wcs.wcs.crval[1]}
else:
pass
return kw2update
updateWCS = classmethod(updateWCS)
class CompSIP(object):
"""
Purpose
=======
Compute SIP coefficients from idc table coefficients.
"""
def updateWCS(cls, ext_wcs, ref_wcs):
kw2update = {}
order = ext_wcs.idcmodel.norder
kw2update['A_ORDER'] = order
kw2update['B_ORDER'] = order
pscale = ext_wcs.idcmodel.refpix['PSCALE']
cx = ext_wcs.idcmodel.cx
cy = ext_wcs.idcmodel.cy
matr = numpy.array([[cx[1,1],cx[1,0]], [cy[1,1],cy[1,0]]], dtype=numpy.float)
imatr = linalg.inv(matr)
akeys1 = numpy.zeros((order+1,order+1), dtype=numpy.float)
bkeys1 = numpy.zeros((order+1,order+1), dtype=numpy.float)
for n in range(order+1):
for m in range(order+1):
if n >= m and n>=2:
idcval = numpy.array([[cx[n,m]],[cy[n,m]]])
sipval = numpy.dot(imatr, idcval)
akeys1[m,n-m] = sipval[0]
bkeys1[m,n-m] = sipval[1]
Akey="A_%d_%d" % (m,n-m)
Bkey="B_%d_%d" % (m,n-m)
kw2update[Akey] = sipval[0,0]
kw2update[Bkey] = sipval[1,0]
kw2update['CTYPE1'] = 'RA---TAN-SIP'
kw2update['CTYPE2'] = 'DEC--TAN-SIP'
return kw2update
updateWCS = classmethod(updateWCS)
|