1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
|
from __future__ import division # confidence high
import datetime
import numpy as np
from numpy import linalg
from pytools import fileutil
from utils import diff_angles
import makewcs, dgeo
MakeWCS = makewcs.MakeWCS
DGEOCorr = dgeo.DGEOCorr
class TDDCorr(object):
"""
Apply time dependent distortion correction to distortion coefficients and basic
WCS keywords. This applies only to ACS/WFC data.
Parameters
----------
ext_wcs: HSTWCS object
An HSTWCS object to be modified
ref_wcs: HSTWCS object
A reference HSTWCS object
Notes
-----
Compute the ACS/WFC time dependent distortion terms
as described in [1]_.
The zero-point terms account for the skew accumulated between
2002.0 and 2004.5, when the latest IDCTAB was delivered.
alpha = 0.095 + 0.090*(rday-dday)/2.5
beta = -0.029 - 0.030*(rday-dday)/2.5
References
----------
.. [1] Jay Anderson, "Variation of the Distortion Solution of the WFC", ACS ISR 2007-08.
"""
def updateWCS(cls, ext_wcs, ref_wcs):
"""
- Calculates alpha and beta for ACS/WFC data.
- Writes 2 new kw to the extension header: TDDALPHA and TDDBETA
"""
alpha, beta = cls.compute_alpha_beta(ext_wcs)
cls.apply_tdd2idc(ref_wcs, alpha, beta)
cls.apply_tdd2idc(ext_wcs, alpha, beta)
ext_wcs.idcmodel.refpix['TDDALPHA'] = alpha
ext_wcs.idcmodel.refpix['TDDBETA'] = beta
ref_wcs.idcmodel.refpix['TDDALPHA'] = alpha
ref_wcs.idcmodel.refpix['TDDBETA'] = beta
newkw = {'TDDALPHA': alpha, 'TDDBETA':beta, 'OCX10':ext_wcs.idcmodel.cx[1,0],
'OCX11':ext_wcs.idcmodel.cx[1,1],'OCY10':ext_wcs.idcmodel.cy[1,0],
'OCY11':ext_wcs.idcmodel.cy[1,1],}
return newkw
updateWCS = classmethod(updateWCS)
def apply_tdd2idc(cls, hwcs, alpha, beta):
"""
Applies TDD to the idctab coefficients of a ACS/WFC observation.
This should be always the first correction.
"""
theta_v2v3 = 2.234529
mrotp = fileutil.buildRotMatrix(theta_v2v3)
mrotn = fileutil.buildRotMatrix(-theta_v2v3)
tdd_mat = np.array([[1+(beta/2048.), alpha/2048.],[alpha/2048.,1-(beta/2048.)]],np.float64)
abmat1 = np.dot(tdd_mat, mrotn)
abmat2 = np.dot(mrotp,abmat1)
xshape, yshape = hwcs.idcmodel.cx.shape, hwcs.idcmodel.cy.shape
icxy = np.dot(abmat2,[hwcs.idcmodel.cx.ravel(), hwcs.idcmodel.cy.ravel()])
hwcs.idcmodel.cx = icxy[0]
hwcs.idcmodel.cy = icxy[1]
hwcs.idcmodel.cx.shape = xshape
hwcs.idcmodel.cy.shape = yshape
apply_tdd2idc = classmethod(apply_tdd2idc)
def compute_alpha_beta(cls, ext_wcs):
"""
Compute the ACS time dependent distortion skew terms
as described in ACS ISR 07-08 by J. Anderson.
Jay's code only computes the alpha/beta values based on a decimal year
with only 3 digits, so this line reproduces that when needed for comparison
with his results.
rday = float(('%0.3f')%rday)
The zero-point terms account for the skew accumulated between
2002.0 and 2004.5, when the latest IDCTAB was delivered.
alpha = 0.095 + 0.090*(rday-dday)/2.5
beta = -0.029 - 0.030*(rday-dday)/2.5
"""
if not isinstance(ext_wcs.date_obs,float):
year,month,day = ext_wcs.date_obs.split('-')
rdate = datetime.datetime(int(year),int(month),int(day))
rday = float(rdate.strftime("%j"))/365.25 + rdate.year
else:
rday = ext_wcs.date_obs
skew_coeffs = ext_wcs.idcmodel.refpix['skew_coeffs']
if skew_coeffs is None:
# Only print out warning for post-SM4 data where this may matter
if rday > 2009.0:
err_str = "------------------------------------------------------------------------ \n"
err_str += "WARNING: the IDCTAB geometric distortion file specified in the image \n"
err_str += " header did not have the time-dependent distortion coefficients. \n"
err_str += " The pre-SM4 time-dependent skew solution will be used by default.\n"
err_str += " Please update IDCTAB with new reference file from HST archive. \n"
err_str += "------------------------------------------------------------------------ \n"
print err_str
# Using default pre-SM4 coefficients
skew_coeffs = {'TDD_A':[0.095,0.090/2.5],
'TDD_B':[-0.029,-0.030/2.5],
'TDD_DATE':2004.5,'TDDORDER':1}
alpha = 0
beta = 0
# Compute skew terms, allowing for non-linear coefficients as well
for c in range(skew_coeffs['TDDORDER']+1):
alpha += skew_coeffs['TDD_A'][c]* np.power((rday-skew_coeffs['TDD_DATE']),c)
beta += skew_coeffs['TDD_B'][c]*np.power((rday-skew_coeffs['TDD_DATE']),c)
return alpha,beta
compute_alpha_beta = classmethod(compute_alpha_beta)
class VACorr(object):
"""
Apply velocity aberation correction to WCS keywords.
Notes
-----
Velocity Aberration is stored in the extension header keyword 'VAFACTOR'.
The correction is applied to the CD matrix and CRVALs.
"""
def updateWCS(cls, ext_wcs, ref_wcs):
if ext_wcs.vafactor != 1:
ext_wcs.wcs.cd = ext_wcs.wcs.cd * ext_wcs.vafactor
crval0 = ref_wcs.wcs.crval[0] + ext_wcs.vafactor*diff_angles(ext_wcs.wcs.crval[0],
ref_wcs.wcs.crval[0])
crval1 = ref_wcs.wcs.crval[1] + ext_wcs.vafactor*diff_angles(ext_wcs.wcs.crval[1],
ref_wcs.wcs.crval[1])
crval = np.array([crval0,crval1])
ext_wcs.wcs.crval = crval
ext_wcs.wcs.set()
else:
pass
kw2update={'CD1_1': ext_wcs.wcs.cd[0,0], 'CD1_2':ext_wcs.wcs.cd[0,1],
'CD2_1':ext_wcs.wcs.cd[1,0], 'CD2_2':ext_wcs.wcs.cd[1,1],
'CRVAL1':ext_wcs.wcs.crval[0], 'CRVAL2':ext_wcs.wcs.crval[1]}
return kw2update
updateWCS = classmethod(updateWCS)
class CompSIP(object):
"""
Compute SIP coefficients from IDC table coefficients.
Notes
-----
"""
def updateWCS(cls, ext_wcs, ref_wcs):
kw2update = {}
order = ext_wcs.idcmodel.norder
kw2update['A_ORDER'] = order
kw2update['B_ORDER'] = order
pscale = ext_wcs.idcmodel.refpix['PSCALE']
cx = ext_wcs.idcmodel.cx
cy = ext_wcs.idcmodel.cy
matr = np.array([[cx[1,1],cx[1,0]], [cy[1,1],cy[1,0]]], dtype=np.float64)
imatr = linalg.inv(matr)
akeys1 = np.zeros((order+1,order+1), dtype=np.float64)
bkeys1 = np.zeros((order+1,order+1), dtype=np.float64)
for n in range(order+1):
for m in range(order+1):
if n >= m and n>=2:
idcval = np.array([[cx[n,m]],[cy[n,m]]])
sipval = np.dot(imatr, idcval)
akeys1[m,n-m] = sipval[0]
bkeys1[m,n-m] = sipval[1]
Akey="A_%d_%d" % (m,n-m)
Bkey="B_%d_%d" % (m,n-m)
kw2update[Akey] = sipval[0,0] * ext_wcs.binned
kw2update[Bkey] = sipval[1,0] * ext_wcs.binned
kw2update['CTYPE1'] = 'RA---TAN-SIP'
kw2update['CTYPE2'] = 'DEC--TAN-SIP'
return kw2update
updateWCS = classmethod(updateWCS)
|