summaryrefslogtreecommitdiff
path: root/updatewcs/makewcs.py
blob: 6e9b7a5a23b1e2947f2fa9a9e791c43b62d5b0ec (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from __future__ import division # confidence high

from stwcs import DEGTORAD, RADTODEG
import numpy as np
from math import sin, sqrt, pow, cos, asin, atan2,pi
import utils
from pytools import fileutil

class MakeWCS(object):
    """
    Purpose
    =======
    Recompute basic WCS keywords based on PA_V3 and distortion model.
    
    Algorithm
    =========
    - update reference chip wcs
        
        -- CRVAL: reference chip model zero point (XREF/YREF) on the sky
        -- PA_V3 is calculated at the target position and adjusted 
           for each chip orientation
        -- CD: PA_V3 and the model scale are used to cnstruct a CD matrix
        
    - update extension wcs

        -- CRVAL: - the distance between the zero points of the two 
                  chip models on the sky
        -- CD matrix: first order coefficients are added to the components 
            of this distance and transfered on the sky. The difference 
            between CRVAL and these vectors is the new CD matrix for each chip.
        -- CRPIX: chip's model zero point in pixel space (XREF/YREF)
    
    """
    tdd_xyref = {1: [2048, 3072], 2:[2048, 1024]}
    def updateWCS(cls, ext_wcs, ref_wcs):    
        """
        recomputes the basic WCS kw 
        """
        ltvoff, offshift = cls.getOffsets(ext_wcs)
        
        v23_corr = cls.zero_point_corr(ext_wcs)
        rv23_corr = cls.zero_point_corr(ref_wcs)
        
        cls.uprefwcs(ext_wcs, ref_wcs, rv23_corr, ltvoff, offshift)
        cls.upextwcs(ext_wcs, ref_wcs, v23_corr, rv23_corr, ltvoff, offshift)

        kw2update = {'CD1_1': ext_wcs.wcs.cd[0,0],
                    'CD1_2': ext_wcs.wcs.cd[0,1],
                    'CD2_1': ext_wcs.wcs.cd[1,0],
                    'CD2_2': ext_wcs.wcs.cd[1,1],
                    'CRVAL1': ext_wcs.wcs.crval[0],
                    'CRVAL2': ext_wcs.wcs.crval[1],
                    'CRPIX1': ext_wcs.wcs.crpix[0],
                    'CRPIX2': ext_wcs.wcs.crpix[1],
                    'IDCTAB': ext_wcs.idctab,
            }
        return kw2update
    
    updateWCS = classmethod(updateWCS)
    
    def upextwcs(cls, ext_wcs, ref_wcs, v23_corr, rv23_corr, loff, offsh):
        """
        updates an extension wcs
        """  
        ltvoffx, ltvoffy = loff[0], loff[1]
        offshiftx, offshifty = offsh[0], offsh[1]
        ltv1 = ext_wcs.ltv1
        ltv2 = ext_wcs.ltv2
        if ltv1 != 0. or ltv2 != 0.:
            offsetx = ext_wcs.wcs.crpix[0] - ltv1 - ext_wcs.idcmodel.refpix['XREF']
            offsety = ext_wcs.wcs.crpix[1] - ltv2 - ext_wcs.idcmodel.refpix['YREF']
            fx,fy = ext_wcs.idcmodel.shift(ext_wcs.idcmodel.cx,ext_wcs.idcmodel.cy,offsetx,offsety)
        else:
            fx, fy = ext_wcs.idcmodel.cx, ext_wcs.idcmodel.cy
        
        tddscale = (ref_wcs.pscale/fx[1,1])
        v2 = ext_wcs.idcmodel.refpix['V2REF'] + v23_corr[0,0] * tddscale
        v3 = ext_wcs.idcmodel.refpix['V3REF'] - v23_corr[1,0] * tddscale
        v2ref = ref_wcs.idcmodel.refpix['V2REF'] + rv23_corr[0,0] * tddscale
        v3ref = ref_wcs.idcmodel.refpix['V3REF'] - rv23_corr[1,0] * tddscale
        
        R_scale = ref_wcs.idcmodel.refpix['PSCALE']/3600.0
        off = sqrt((v2-v2ref)**2 + (v3-v3ref)**2)/(R_scale*3600.0)
        
        if v3 == v3ref:
            theta=0.0
        else:
            theta = atan2(ext_wcs.parity[0][0]*(v2-v2ref), ext_wcs.parity[1][1]*(v3-v3ref))
        
        if ref_wcs.idcmodel.refpix['THETA']: theta += ref_wcs.idcmodel.refpix['THETA']*pi/180.0

        dX=(off*sin(theta)) + offshiftx
        dY=(off*cos(theta)) + offshifty
        
        px = np.array([[dX,dY]])
        newcrval = ref_wcs.wcs.p2s(px, 1)['world'][0]
        newcrpix = np.array([ext_wcs.idcmodel.refpix['XREF'] + ltvoffx, 
                                ext_wcs.idcmodel.refpix['YREF'] + ltvoffy])
        ext_wcs.wcs.crval = newcrval
        ext_wcs.wcs.crpix = newcrpix
        ext_wcs.wcs.set()
        
        # Create a small vector, in reference image pixel scale
        delmat = np.array([[fx[1,1], fy[1,1]], \
                              [fx[1,0], fy[1,0]]]) / R_scale/3600.
                            
        # Account for subarray offset
        # Angle of chip relative to chip
        if ext_wcs.idcmodel.refpix['THETA']:
            dtheta = ext_wcs.idcmodel.refpix['THETA'] - ref_wcs.idcmodel.refpix['THETA']
        else:
            dtheta = 0.0                    
        
        rrmat = fileutil.buildRotMatrix(dtheta)
        # Rotate the vectors
        dxy = np.dot(delmat, rrmat)
        wc = ref_wcs.wcs.p2s((px + dxy), 1)['world']
        
        # Calculate the new CDs and convert to degrees
        cd11 = utils.diff_angles(wc[0,0],newcrval[0])*cos(newcrval[1]*pi/180.0)
        cd12 = utils.diff_angles(wc[1,0],newcrval[0])*cos(newcrval[1]*pi/180.0)
        cd21 = utils.diff_angles(wc[0,1],newcrval[1])
        cd22 = utils.diff_angles(wc[1,1],newcrval[1])
        cd = np.array([[cd11, cd12], [cd21, cd22]])
        ext_wcs.wcs.cd = cd  
        ext_wcs.wcs.set()

    upextwcs = classmethod(upextwcs)
        
    def uprefwcs(cls, ext_wcs, ref_wcs, rv23_corr_tdd, loff, offsh):
        """
        Updates the reference chip
        """
        ltvoffx, ltvoffy = loff[0], loff[1]
        offshift = offsh
        dec = ref_wcs.wcs.crval[1]
        tddscale = (ref_wcs.pscale/ext_wcs.idcmodel.cx[1,1])
        rv23 = [ref_wcs.idcmodel.refpix['V2REF'] + (rv23_corr_tdd[0,0] *tddscale), 
            ref_wcs.idcmodel.refpix['V3REF'] - (rv23_corr_tdd[1,0] * tddscale)]
        # Get an approximate reference position on the sky
        rref = np.array([[ref_wcs.idcmodel.refpix['XREF']+ltvoffx , 
                            ref_wcs.idcmodel.refpix['YREF']+ltvoffy]])
        
        crval = ref_wcs.wcs.p2s(rref, 1)['world'][0]
        # Convert the PA_V3 orientation to the orientation at the aperture
        # This is for the reference chip only - we use this for the
        # reference tangent plane definition
        # It has the same orientation as the reference chip
        pv = troll(ext_wcs.pav3,dec,rv23[0], rv23[1])
        # Add the chip rotation angle
        if ref_wcs.idcmodel.refpix['THETA']:
            pv += ref_wcs.idcmodel.refpix['THETA']
            
        
        # Set values for the rest of the reference WCS
        ref_wcs.wcs.crval = crval
        ref_wcs.wcs.crpix = np.array([0.0,0.0])+offsh
        parity = ref_wcs.parity
        R_scale = ref_wcs.idcmodel.refpix['PSCALE']/3600.0
        cd11 = parity[0][0] *  cos(pv*pi/180.0)*R_scale
        cd12 = parity[0][0] * -sin(pv*pi/180.0)*R_scale
        cd21 = parity[1][1] *  sin(pv*pi/180.0)*R_scale
        cd22 = parity[1][1] *  cos(pv*pi/180.0)*R_scale
        
        rcd = np.array([[cd11, cd12], [cd21, cd22]])
        ref_wcs.wcs.cd = rcd
        ref_wcs.wcs.set()
        
    uprefwcs = classmethod(uprefwcs)
        
    def zero_point_corr(cls,hwcs):
        try:
            alpha = hwcs.idcmodel.refpix['TDDALPHA']
            beta = hwcs.idcmodel.refpix['TDDBETA']
        except KeyError:
            return np.array([[0., 0.],[0.,0.]])
        
        tdd = np.array([[beta, alpha], [alpha, -beta]])
        mrotp = fileutil.buildRotMatrix(2.234529)/2048.
        xy0 = np.array([[cls.tdd_xyref[hwcs.chip][0]-2048.], [cls.tdd_xyref[hwcs.chip][1]-2048.]])
        v23_corr = np.dot(mrotp,np.dot(tdd,xy0)) * 0.05
        
        return v23_corr 
    
    zero_point_corr = classmethod(zero_point_corr)
        
    def getOffsets(cls, ext_wcs):
        ltv1 = ext_wcs.ltv1
        ltv2 = ext_wcs.ltv2
        
        offsetx = ext_wcs.wcs.crpix[0] - ltv1 - ext_wcs.idcmodel.refpix['XREF']
        offsety = ext_wcs.wcs.crpix[1] - ltv2 - ext_wcs.idcmodel.refpix['YREF']
        
        shiftx = ext_wcs.idcmodel.refpix['XREF'] + ltv1
        shifty = ext_wcs.idcmodel.refpix['YREF'] + ltv2
        if ltv1 != 0. or ltv2 != 0.:
            ltvoffx = ltv1 + offsetx
            ltvoffy = ltv2 + offsety
            offshiftx = offsetx + shiftx
            offshifty = offsety + shifty
        else:
            ltvoffx = 0.
            ltvoffy = 0.
            offshiftx = 0.
            offshifty = 0.
            
        ltvoff = np.array([ltvoffx, ltvoffy])
        offshift = np.array([offshiftx, offshifty])
        return ltvoff, offshift
    
    getOffsets = classmethod(getOffsets)
    

def troll(roll, dec, v2, v3):
    """ Computes the roll angle at the target position based on:
            the roll angle at the V1 axis(roll),
            the dec of the target(dec), and
            the V2/V3 position of the aperture (v2,v3) in arcseconds.

        Based on the algorithm provided by Colin Cox that is used in
        Generic Conversion at STScI.
    """
    # Convert all angles to radians
    _roll = DEGTORAD(roll)
    _dec = DEGTORAD(dec)
    _v2 = DEGTORAD(v2 / 3600.)
    _v3 = DEGTORAD(v3 / 3600.)

    # compute components
    sin_rho = sqrt((pow(sin(_v2),2)+pow(sin(_v3),2)) - (pow(sin(_v2),2)*pow(sin(_v3),2)))
    rho = asin(sin_rho)
    beta = asin(sin(_v3)/sin_rho)
    if _v2 < 0: beta = pi - beta
    gamma = asin(sin(_v2)/sin_rho)
    if _v3 < 0: gamma = pi - gamma
    A = pi/2. + _roll - beta
    B = atan2( sin(A)*cos(_dec), (sin(_dec)*sin_rho - cos(_dec)*cos(rho)*cos(A)))

    # compute final value
    troll = RADTODEG(pi - (gamma+B))

    return troll