1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
|
import os,copy
import pyfits
import numpy as np
from pytools import fileutil
import stwcs
from stwcs.wcsutil import altwcs
import convertwcs
DEFAULT_WCS_KEYS = ['CRVAL1','CRVAL2','CRPIX1','CRPIX2',
'CD1_1','CD1_2','CD2_1','CD2_2',
'CTYPE1','CTYPE2']
DEFAULT_PRI_KEYS = ['PA_V3']
###
### WCSEXT table related keyword archive functions
###
def init_wcscorr(input, force=False):
"""
This function will initialize the WCSCORR table if it is not already present,
and look for WCS keywords with a prefix of 'O' as the original OPUS
generated WCS as the initial row for the table or use the current WCS
keywords as initial row if no 'O' prefix keywords are found.
This function will NOT overwrite any rows already present.
This function works on all SCI extensions at one time.
"""
# TODO: Create some sort of decorator or (for Python2.5) context for
# opening a FITS file and closing it when done, if necessary
if not isinstance(input, pyfits.HDUList):
# input must be a filename, so open as PyFITS object
fimg = pyfits.open(input, mode='update')
need_to_close = True
else:
fimg = input
need_to_close = False
# Verify that a WCSCORR extension does not already exist...
for extn in fimg:
if extn.header.has_key('extname') and \
extn.header['extname'] == 'WCSCORR':
if not force:
return
else:
del fimg['WCSCORR']
# define the primary columns of the WCSEXT table with initial rows for each
# SCI extension for the original OPUS solution
numsci = fileutil.countExtn(fimg)
# create new table with more rows than needed initially to make it easier to
# add new rows later
wcsext = create_wcscorr(numrows=numsci, padding=numsci * 4)
# Assign the correct EXTNAME value to this table extension
wcsext.header.update('TROWS', numsci * 2,
comment='Number of updated rows in table')
wcsext.header.update('EXTNAME', 'WCSCORR',
comment='Table with WCS Update history')
used_wcskeys = None
wcs1 = stwcs.wcsutil.HSTWCS(fimg,ext=('SCI',1))
idc2header = True
if wcs1.idcscale is None:
idc2header = False
wcs_keywords = wcs1.wcs2header(idc2hdr=idc2header).keys()
# Now copy original OPUS values into table
for extver in xrange(1, numsci + 1):
rowind = find_wcscorr_row(wcsext.data,
{'WCS_ID': 'OPUS', 'EXTVER': extver,
'WCS_key':'O'})
# There should only EVER be a single row for each extension with OPUS values
rownum = np.where(rowind)[0][0]
#print 'Archiving OPUS WCS in row number ',rownum,' in WCSCORR table for SCI,',extver
hdr = fimg['SCI', extver].header
# define set of WCS keywords which need to be managed and copied to the table
if used_wcskeys is None:
used_wcskeys = altwcs.wcskeys(hdr)
# Check to see whether or not there is an OPUS alternate WCS present,
# if so, get its values directly, otherwise, archive the PRIMARY WCS
# as the OPUS values in the WCSCORR table
if 'O' in used_wcskeys:
wkey = 'O'
else:
wkey = ' '
wcs = stwcs.wcsutil.HSTWCS(fimg, ext=('SCI', extver), wcskey=wkey)
wcshdr = wcs.wcs2header(idc2hdr=idc2header)
for key in DEFAULT_PRI_KEYS:
prihdr_keys = []
if not hdr.has_key(key):
prihdr_keys.append(key)
if wcsext.data.field('CRVAL1')[rownum] != 0:
# If we find values for these keywords already in the table, do not
# overwrite them again
print 'WCS keywords already updated...'
break
for key in wcs_keywords:
if key in wcsext.data.names:
wcsext.data.field(key)[rownum] = wcshdr[(key+wkey)[:8]]
# Now get any keywords from PRIMARY header needed for WCS updates
for key in prihdr_keys:
wcsext.data.field(key)[rownum] = fimg[0].header[key]
# Now that we have archived the OPUS alternate WCS, remove it from the list
# of used_wcskeys
if 'O' in used_wcskeys:
used_wcskeys.remove('O')
# Now copy remaining alternate WCSs into table
for uwkey in used_wcskeys:
if wkey == ' ':
break
for extver in xrange(1, numsci + 1):
hdr = fimg['SCI', extver].header
wcs = stwcs.wcsutil.HSTWCS(fimg, ext=('SCI', extver),
wcskey=uwkey)
wcshdr = wcs.wcs2header()
if 'WCSNAME' + uwkey not in wcshdr:
idctab = fileutil.osfn(fimg[0].header['idctab'])
idcname = os.path.split(idctab)[-1]
idcname = idcname[:idcname.find('_')]
wcsid = 'IDC_' + idcname + '_' + fileutil.getDate()
else:
wcsid = wcshdr['WCSNAME' + uwkey]
# identify next empty row
rowind = find_wcscorr_row(wcsext.data, selections={'wcs_id': ''})
rows = np.where(rowind)
if len(rows[0]) > 0:
rownum = np.where(rowind)[0][0]
else:
print 'No available rows found for updating. '
#print 'Archiving current WCS row number ',rownum,' in WCSCORR table for SCI,',extver
# Update selection columns for this row with relevant values
wcsext.data.field('WCS_ID')[rownum] = wcsid
wcsext.data.field('EXTVER')[rownum] = extver
wcsext.data.field('WCS_key')[rownum] = uwkey
# Look for standard WCS keyword values
for key in wcs_keywords:
if key in wcsext.data.names:
wcsext.data.field(key)[rownum] = wcshdr[key + uwkey]
# Now get any keywords from PRIMARY header needed for WCS updates
for key in prihdr_keys:
wcsext.data.field(key)[rownum] = fimg[0].header[key]
# Append this table to the image FITS file
fimg.append(wcsext)
# force an update now
# set the verify flag to 'warn' so that it will always succeed, but still
# tell the user if PyFITS detects any problems with the file as a whole
fimg.flush('warn')
if need_to_close:
fimg.close()
def find_wcscorr_row(wcstab, selections):
""" Return an array of indices from the table (NOT HDU) 'wcstab' that matches the
selections specified by the user.
The row selection criteria must be specified as a dictionary with
column name as key and value(s) representing the valid desired row values.
For example, {'wcs_id':'OPUS','extver':2}.
"""
mask = None
for i in selections:
bmask = (wcstab.field(i) == selections[i])
if mask is None:
mask = bmask.copy()
else:
mask = np.logical_and(mask,bmask)
del bmask
return mask
def archive_wcs_file(image, wcs_id=None):
"""
Update WCSCORR table with rows for each SCI extension to record the
newly updated WCS keyword values.
"""
if not isinstance(image, pyfits.HDUList):
fimg = pyfits.open(image, mode='update')
close_image = True
else:
fimg = image
close_image = False
numsci = fileutil.countExtn(fimg)
for extn in range(1, numsci+1):
update_wcscorr(fimg, fimg['sci',extn].header, selections=wcs_id)
if close_image:
fimg.close()
def update_wcscorr(fimg, hdr, selections=None):
"""
Update WCSCORR table with a new row for this extension header. It
copies the current set of WCS keywords as a new row of the table based on
keyed WCSs as per Paper I Multiple WCS standard).
"""
# Now update the table...
if selections is None:
# define the WCS ID for this update
wcs_key = altwcs.wcskeys(hdr)[-1]
selections = {'WCS_ID': 'TWEAK_' + fileutil.getDate(),
'EXTVER': hdr['extver'], 'WCS_key': wcs_key}
if selections == 'IDC':
idcname = os.path.split(fileutil.osfn(fimg[0].header['idctab']))[1]
selections = {'WCS_ID': 'IDC_%s_%s' % (idcname, fileutil.getDate()),
'EXTVER': hdr['extver'], 'WCS_key': wcs_key}
# create new table for hdr and populate it with the newly updated values
new_table = create_wcscorr()
if hdr.has_key('extname'):
extname = hdr['extname']
else:
extname = 'PRIMARY'
if hdr.has_key('extver'):
extver = hdr['extver']
else:
extver = 1
extn = (extname, extver)
wcshdr = stwcs.wcsutil.HSTWCS(fimg, ext=extn).wcs2header()
# ===> NOTE: need to add checks to insure that these IDs are unique
# Update selection column values
for key in selections:
new_table.data.field(key)[0] = selections[key]
for key in wcshdr:
if key in new_table.data.names:
new_table.data.field(key)[0] = hdr[key]
for key in DEFAULT_PRI_KEYS:
if key in new_table.data.names:
new_table.data.field(key)[0] = fimg[0].header[key]
# Now, we need to merge this into the existing table
old_table = fimg['WCSCORR']
rowind = find_wcscorr_row(old_table.data, {'wcs_id': ''})
old_nrows = np.where(rowind)[0][0]
# check to see if there is room for the new row
if (old_nrows + 1) > old_table.data.shape[0]:
# if not, create a new table with 'pad_rows' new empty rows
upd_table = pyfits.new_table(old_table.columns,
nrows=old_table.data.shape[0] + pad_rows)
else:
upd_table = old_table
# Now, add
for name in old_table.columns.names:
upd_table.data.field(name)[old_nrows:old_nrows+1] = \
new_table.data.field(name)
upd_table.header.update('TROWS', old_nrows + 1)
# replace old extension with newly updated table extension
fimg['WCSCORR'] = upd_table
def restore_file_from_wcscorr(image, id='OPUS', wcskey=''):
""" Copies the values of the WCS from the WCSCORR based on ID specified by user.
The default will be to restore the original OPUS-derived values to the Primary WCS.
If wcskey is specified, the WCS with that key will be updated instead.
"""
if not isinstance(image, pyfits.HDUList):
fimg = pyfits.open(image, mode='update')
close_image = True
else:
fimg = image
close_image = False
numsci = fileutil.countExtn(fimg)
wcs_table = fimg['WCSCORR']
orig_rows = (wcs_table.data.field('WCS_ID') == 'OPUS')
# create an HSTWCS object to figure out what WCS keywords need to be updated
wcsobj = stwcs.wcsutil.HSTWCS(fimg,ext=('sci',1))
wcshdr = wcsobj.wcs2header()
for extn in range(1,numsci+1):
# find corresponding row from table
ext_rows = (wcs_table.data.field('EXTVER') == extn)
erow = np.where(np.logical_and(ext_rows,orig_rows))[0][0]
for key in wcshdr:
if key in wcs_table.data.names: # insure that keyword is column in table
tkey = key
if 'orient' in key.lower():
key = 'ORIENT'
if wcskey == '':
skey = key
else:
skey = key[:7]+wcskey
fimg['sci',extn].header.update(skey,wcs_table.data.field(tkey)[erow])
for key in DEFAULT_PRI_KEYS:
if key in wcs_table.data.names:
if wcskey == '':
pkey = key
else:
pkey = key[:7]+wcskey
fimg[0].header.update(pkey,wcs_table.data.field(key)[erow])
# close the image now that the update has been completed.
if close_image:
fimg.close()
def create_wcscorr(descrip=False, numrows=1, padding=0):
"""
Return the basic definitions for a WCSCORR table.
The dtype definitions for the string columns are set to the maximum allowed so
that all new elements will have the same max size which will be automatically
truncated to this limit upon updating (if needed).
The table is initialized with rows corresponding to the OPUS solution
for all the 'SCI' extensions.
"""
trows = numrows + padding
# define initialized arrays as placeholders for column data
# TODO: I'm certain there's an easier way to do this... for example, simply
# define the column names and formats, then create an empty array using
# them as a dtype, then create the new table from that array.
def_float64_zeros = np.array([0.0] * trows, dtype=np.float64)
def_float64_ones = def_float64_zeros + 1.0
def_float_col = {'format': 'D', 'array': def_float64_zeros.copy()}
def_float1_col = {'format': 'D', 'array':def_float64_ones.copy()}
def_str40_col = {'format': '40A',
'array': np.array([''] * trows, dtype='S40')}
def_str24_col = {'format': '24A',
'array': np.array([''] * trows, dtype='S24')}
def_int32_col = {'format': 'J',
'array': np.array([0]*trows,dtype=np.int32)}
# If more columns are needed, simply add their definitions to this list
col_names = [('CRVAL1', def_float_col), ('CRVAL2', def_float_col),
('CRPIX1', def_float_col), ('CRPIX2', def_float_col),
('CD1_1', def_float_col), ('CD1_2', def_float_col),
('CD2_1', def_float_col), ('CD2_2', def_float_col),
('CTYPE1', def_str24_col), ('CTYPE2', def_str24_col),
('ORIENTAT', def_float_col), ('PA_V3', def_float_col),
('Delta_RA', def_float_col), ('Delta_Dec', def_float_col),
('RMS_RA', def_float_col), ('RMS_Dec', def_float_col),
('Delta_Orientat', def_float_col),
('Delta_Scale', def_float1_col),
('NMatch', def_int32_col), ('Catalog', def_str40_col)]
# Define selector columns
id_col = pyfits.Column(name='WCS_ID', format='40A',
array=np.array(['OPUS'] * numrows + [''] * padding,
dtype='S24'))
extver_col = pyfits.Column(name='EXTVER', format='I',
array=np.array(range(1, numrows + 1),
dtype=np.int16))
wcskey_col = pyfits.Column(name='WCS_key', format='A',
array=np.array(['O'] * numrows + [''] * padding,
dtype='S'))
# create list of remaining columns to be added to table
col_list = [id_col, extver_col, wcskey_col] # start with selector columns
for c in col_names:
cdef = copy.deepcopy(c[1])
col_list.append(pyfits.Column(name=c[0], format=cdef['format'],
array=cdef['array']))
if descrip:
col_list.append(
pyfits.Column(name='Descrip', format='128A',
array=np.array(
['Original WCS computed by OPUS'] * numrows,
dtype='S128')))
# Now create the new table from the column definitions
newtab = pyfits.new_table(pyfits.ColDefs(col_list), nrows=trows)
# The fact that setting .name is necessary should be considered a bug in
# pyfits.
# TODO: Make sure this is fixed in pyfits, then remove this
newtab.name = 'WCSCORR'
return newtab
|