aboutsummaryrefslogtreecommitdiff
path: root/Src/external_dependencies/openmpt-trunk/sounddsp/Reverb.cpp
diff options
context:
space:
mode:
authorJean-Francois Mauguit <jfmauguit@mac.com>2024-09-24 09:03:25 -0400
committerGitHub <noreply@github.com>2024-09-24 09:03:25 -0400
commitbab614c421ed7ae329d26bf028c4a3b1d2450f5a (patch)
tree12f17f78986871dd2cfb0a56e5e93b545c1ae0d0 /Src/external_dependencies/openmpt-trunk/sounddsp/Reverb.cpp
parent4bde6044fddf053f31795b9eaccdd2a5a527d21f (diff)
parent20d28e80a5c861a9d5f449ea911ab75b4f37ad0d (diff)
downloadwinamp-bab614c421ed7ae329d26bf028c4a3b1d2450f5a.tar.gz
Merge pull request #5 from WinampDesktop/community
Merge to main
Diffstat (limited to 'Src/external_dependencies/openmpt-trunk/sounddsp/Reverb.cpp')
-rw-r--r--Src/external_dependencies/openmpt-trunk/sounddsp/Reverb.cpp1040
1 files changed, 1040 insertions, 0 deletions
diff --git a/Src/external_dependencies/openmpt-trunk/sounddsp/Reverb.cpp b/Src/external_dependencies/openmpt-trunk/sounddsp/Reverb.cpp
new file mode 100644
index 00000000..5355568c
--- /dev/null
+++ b/Src/external_dependencies/openmpt-trunk/sounddsp/Reverb.cpp
@@ -0,0 +1,1040 @@
+/*
+ * Reverb.cpp
+ * ----------
+ * Purpose: Mixing code for reverb.
+ * Notes : Ugh... This should really be removed at some point.
+ * Authors: Olivier Lapicque
+ * OpenMPT Devs
+ * The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
+ */
+
+
+#include "stdafx.h"
+
+#ifndef NO_REVERB
+#include "Reverb.h"
+#include "../soundlib/MixerLoops.h"
+#include "mpt/base/numbers.hpp"
+
+#if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2)
+#include <emmintrin.h>
+#endif
+
+#endif // NO_REVERB
+
+
+OPENMPT_NAMESPACE_BEGIN
+
+
+#ifndef NO_REVERB
+
+
+#if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2)
+// Load two 32-bit values
+static MPT_FORCEINLINE __m128i Load64SSE(const int32 *x) { return _mm_loadl_epi64(reinterpret_cast<const __m128i *>(x)); }
+// Load four 16-bit values
+static MPT_FORCEINLINE __m128i Load64SSE(const LR16 (&x)[2]) { return _mm_loadl_epi64(&reinterpret_cast<const __m128i &>(x)); }
+// Store two 32-bit or four 16-bit values from register
+static MPT_FORCEINLINE void Store64SSE(int32 *dst, __m128i src) { return _mm_storel_epi64(reinterpret_cast<__m128i *>(dst), src); }
+static MPT_FORCEINLINE void Store64SSE(LR16 (&dst)[2], __m128i src) { return _mm_storel_epi64(&reinterpret_cast<__m128i &>(dst), src); }
+#endif
+
+
+CReverb::CReverb()
+{
+ // Reverb mix buffers
+ MemsetZero(g_RefDelay);
+ MemsetZero(g_LateReverb);
+}
+
+
+static int32 OnePoleLowPassCoef(int32 scale, float g, float F_c, float F_s)
+{
+ if(g > 0.999999f) return 0;
+
+ g *= g;
+ double scale_over_1mg = scale / (1.0 - g);
+ double cosw = std::cos((2.0 * mpt::numbers::pi) * F_c / F_s);
+ return mpt::saturate_round<int32>((1.0 - (std::sqrt((g + g) * (1.0 - cosw) - g * g * (1.0 - cosw * cosw)) + g * cosw)) * scale_over_1mg);
+}
+
+static float mBToLinear(int32 value_mB)
+{
+ if(!value_mB) return 1;
+ if(value_mB <= -100000) return 0;
+
+ const double val = value_mB * 3.321928094887362304 / (100.0 * 20.0); // log2(10)/(100*20)
+ return static_cast<float>(std::pow(2.0, val - static_cast<int32>(0.5 + val)));
+}
+
+static int32 mBToLinear(int32 scale, int32 value_mB)
+{
+ return mpt::saturate_round<int32>(mBToLinear(value_mB) * scale);
+}
+
+static constexpr std::pair<SNDMIX_REVERB_PROPERTIES, const char *> ReverbPresets[NUM_REVERBTYPES] =
+{
+ // Examples simulating General MIDI 2'musical' reverb presets
+ // Name (Decay time) Description
+ // Plate (1.3s) A plate reverb simulation.
+ {{ -1000, -200, 1.30f,0.90f, 0,0.002f, 0,0.010f,100.0f, 75.0f }, "GM Plate"},
+ // Small Room (1.1s) A small size room with a length of 5m or so.
+ {{ -1000, -600, 1.10f,0.83f, -400,0.005f, 500,0.010f,100.0f,100.0f }, "GM Small Room"},
+ // Medium Room (1.3s) A medium size room with a length of 10m or so.
+ {{ -1000, -600, 1.30f,0.83f, -1000,0.010f, -200,0.020f,100.0f,100.0f }, "GM Medium Room"},
+ // Large Room (1.5s) A large size room suitable for live performances.
+ {{ -1000, -600, 1.50f,0.83f, -1600,0.020f, -1000,0.040f,100.0f,100.0f }, "GM Large Room"},
+ // Medium Hall (1.8s) A medium size concert hall.
+ {{ -1000, -600, 1.80f,0.70f, -1300,0.015f, -800,0.030f,100.0f,100.0f }, "GM Medium Hall"},
+ // Large Hall (1.8s) A large size concert hall suitable for a full orchestra.
+ {{ -1000, -600, 1.80f,0.70f, -2000,0.030f, -1400,0.060f,100.0f,100.0f }, "GM Large Hall"},
+
+ {{ -1000, -100, 1.49f,0.83f, -2602,0.007f, 200,0.011f,100.0f,100.0f }, "Generic"},
+ {{ -1000,-6000, 0.17f,0.10f, -1204,0.001f, 207,0.002f,100.0f,100.0f }, "Padded Cell"},
+ {{ -1000, -454, 0.40f,0.83f, -1646,0.002f, 53,0.003f,100.0f,100.0f }, "Room"},
+ {{ -1000,-1200, 1.49f,0.54f, -370,0.007f, 1030,0.011f,100.0f, 60.0f }, "Bathroom"},
+ {{ -1000,-6000, 0.50f,0.10f, -1376,0.003f, -1104,0.004f,100.0f,100.0f }, "Living Room"},
+ {{ -1000, -300, 2.31f,0.64f, -711,0.012f, 83,0.017f,100.0f,100.0f }, "Stone Room"},
+ {{ -1000, -476, 4.32f,0.59f, -789,0.020f, -289,0.030f,100.0f,100.0f }, "Auditorium"},
+ {{ -1000, -500, 3.92f,0.70f, -1230,0.020f, -2,0.029f,100.0f,100.0f }, "Concert Hall"},
+ {{ -1000, 0, 2.91f,1.30f, -602,0.015f, -302,0.022f,100.0f,100.0f }, "Cave"},
+ {{ -1000, -698, 7.24f,0.33f, -1166,0.020f, 16,0.030f,100.0f,100.0f }, "Arena"},
+ {{ -1000,-1000,10.05f,0.23f, -602,0.020f, 198,0.030f,100.0f,100.0f }, "Hangar"},
+ {{ -1000,-4000, 0.30f,0.10f, -1831,0.002f, -1630,0.030f,100.0f,100.0f }, "Carpeted Hallway"},
+ {{ -1000, -300, 1.49f,0.59f, -1219,0.007f, 441,0.011f,100.0f,100.0f }, "Hallway"},
+ {{ -1000, -237, 2.70f,0.79f, -1214,0.013f, 395,0.020f,100.0f,100.0f }, "Stone Corridor"},
+ {{ -1000, -270, 1.49f,0.86f, -1204,0.007f, -4,0.011f,100.0f,100.0f }, "Alley"},
+ {{ -1000,-3300, 1.49f,0.54f, -2560,0.162f, -613,0.088f, 79.0f,100.0f }, "Forest"},
+ {{ -1000, -800, 1.49f,0.67f, -2273,0.007f, -2217,0.011f, 50.0f,100.0f }, "City"},
+ {{ -1000,-2500, 1.49f,0.21f, -2780,0.300f, -2014,0.100f, 27.0f,100.0f }, "Mountains"},
+ {{ -1000,-1000, 1.49f,0.83f,-10000,0.061f, 500,0.025f,100.0f,100.0f }, "Quarry"},
+ {{ -1000,-2000, 1.49f,0.50f, -2466,0.179f, -2514,0.100f, 21.0f,100.0f }, "Plain"},
+ {{ -1000, 0, 1.65f,1.50f, -1363,0.008f, -1153,0.012f,100.0f,100.0f }, "Parking Lot"},
+ {{ -1000,-1000, 2.81f,0.14f, 429,0.014f, 648,0.021f, 80.0f, 60.0f }, "Sewer Pipe"},
+ {{ -1000,-4000, 1.49f,0.10f, -449,0.007f, 1700,0.011f,100.0f,100.0f }, "Underwater"},
+};
+
+mpt::ustring GetReverbPresetName(uint32 preset)
+{
+ return (preset < NUM_REVERBTYPES) ? mpt::ToUnicode(mpt::Charset::ASCII, ReverbPresets[preset].second) : mpt::ustring{};
+}
+
+const SNDMIX_REVERB_PROPERTIES *GetReverbPreset(uint32 preset)
+{
+ return (preset < NUM_REVERBTYPES) ? &ReverbPresets[preset].first : nullptr;
+}
+
+//////////////////////////////////////////////////////////////////////////
+//
+// I3DL2 environmental reverb support
+//
+
+struct REFLECTIONPRESET
+{
+ int32 lDelayFactor;
+ int16 sGainLL, sGainRR, sGainLR, sGainRL;
+};
+
+const REFLECTIONPRESET gReflectionsPreset[ENVIRONMENT_NUMREFLECTIONS] =
+{
+ // %Delay, ll, rr, lr, rl
+ {0, 9830, 6554, 0, 0},
+ {10, 6554, 13107, 0, 0},
+ {24, -9830, 13107, 0, 0},
+ {36, 13107, -6554, 0, 0},
+ {54, 16384, 16384, -1638, -1638},
+ {61, -13107, 8192, -328, -328},
+ {73, -11468, -11468, -3277, 3277},
+ {87, 13107, -9830, 4916, -4916}
+};
+
+////////////////////////////////////////////////////////////////////////////////////
+//
+// Implementation
+//
+
+MPT_FORCEINLINE int32 ftol(float f) { return static_cast<int32>(f); }
+
+static void I3dl2_to_Generic(
+ const SNDMIX_REVERB_PROPERTIES *pReverb,
+ EnvironmentReverb *pRvb,
+ float flOutputFreq,
+ int32 lMinRefDelay,
+ int32 lMaxRefDelay,
+ int32 lMinRvbDelay,
+ int32 lMaxRvbDelay,
+ int32 lTankLength)
+{
+ float flDelayFactor, flDelayFactorHF, flDecayTimeHF;
+ int32 lDensity, lTailDiffusion;
+
+ // Common parameters
+ pRvb->ReverbLevel = pReverb->lReverb;
+ pRvb->ReflectionsLevel = pReverb->lReflections;
+ pRvb->RoomHF = pReverb->lRoomHF;
+
+ // HACK: Somewhat normalize the reverb output level
+ int32 lMaxLevel = (pRvb->ReverbLevel > pRvb->ReflectionsLevel) ? pRvb->ReverbLevel : pRvb->ReflectionsLevel;
+ if (lMaxLevel < -600)
+ {
+ lMaxLevel += 600;
+ pRvb->ReverbLevel -= lMaxLevel;
+ pRvb->ReflectionsLevel -= lMaxLevel;
+ }
+
+ // Pre-Diffusion factor (for both reflections and late reverb)
+ lDensity = 8192 + ftol(79.31f * pReverb->flDensity);
+ pRvb->PreDiffusion = lDensity;
+
+ // Late reverb diffusion
+ lTailDiffusion = ftol((0.15f + pReverb->flDiffusion * (0.36f*0.01f)) * 32767.0f);
+ if (lTailDiffusion > 0x7f00) lTailDiffusion = 0x7f00;
+ pRvb->TankDiffusion = lTailDiffusion;
+
+ // Verify reflections and reverb delay parameters
+ float flRefDelay = pReverb->flReflectionsDelay;
+ if (flRefDelay > 0.100f) flRefDelay = 0.100f;
+ int32 lReverbDelay = ftol(pReverb->flReverbDelay * flOutputFreq);
+ int32 lReflectionsDelay = ftol(flRefDelay * flOutputFreq);
+ int32 lReverbDecayTime = ftol(pReverb->flDecayTime * flOutputFreq);
+ if (lReflectionsDelay < lMinRefDelay)
+ {
+ lReverbDelay -= (lMinRefDelay - lReflectionsDelay);
+ lReflectionsDelay = lMinRefDelay;
+ }
+ if (lReflectionsDelay > lMaxRefDelay)
+ {
+ lReverbDelay += (lReflectionsDelay - lMaxRefDelay);
+ lReflectionsDelay = lMaxRefDelay;
+ }
+ // Adjust decay time when adjusting reverb delay
+ if (lReverbDelay < lMinRvbDelay)
+ {
+ lReverbDecayTime -= (lMinRvbDelay - lReverbDelay);
+ lReverbDelay = lMinRvbDelay;
+ }
+ if (lReverbDelay > lMaxRvbDelay)
+ {
+ lReverbDecayTime += (lReverbDelay - lMaxRvbDelay);
+ lReverbDelay = lMaxRvbDelay;
+ }
+ pRvb->ReverbDelay = lReverbDelay;
+ pRvb->ReverbDecaySamples = lReverbDecayTime;
+ // Setup individual reflections delay and gains
+ for (uint32 iRef=0; iRef<ENVIRONMENT_NUMREFLECTIONS; iRef++)
+ {
+ EnvironmentReflection &ref = pRvb->Reflections[iRef];
+ ref.Delay = lReflectionsDelay + (gReflectionsPreset[iRef].lDelayFactor * lReverbDelay + 50)/100;
+ ref.GainLL = gReflectionsPreset[iRef].sGainLL;
+ ref.GainRL = gReflectionsPreset[iRef].sGainRL;
+ ref.GainLR = gReflectionsPreset[iRef].sGainLR;
+ ref.GainRR = gReflectionsPreset[iRef].sGainRR;
+ }
+
+ // Late reverb decay time
+ if (lTankLength < 10) lTankLength = 10;
+ flDelayFactor = (lReverbDecayTime <= lTankLength) ? 1.0f : ((float)lTankLength / (float)lReverbDecayTime);
+ pRvb->ReverbDecay = ftol(std::pow(0.001f, flDelayFactor) * 32768.0f);
+
+ // Late Reverb Decay HF
+ flDecayTimeHF = (float)lReverbDecayTime * pReverb->flDecayHFRatio;
+ flDelayFactorHF = (flDecayTimeHF <= (float)lTankLength) ? 1.0f : ((float)lTankLength / flDecayTimeHF);
+ pRvb->flReverbDamping = std::pow(0.001f, flDelayFactorHF);
+}
+
+
+void CReverb::Shutdown(MixSampleInt &gnRvbROfsVol, MixSampleInt &gnRvbLOfsVol)
+{
+ gnReverbSend = false;
+
+ gnRvbLOfsVol = 0;
+ gnRvbROfsVol = 0;
+
+ // Clear out all reverb state
+ g_bLastInPresent = false;
+ g_bLastOutPresent = false;
+ g_nLastRvbIn_xl = g_nLastRvbIn_xr = 0;
+ g_nLastRvbIn_yl = g_nLastRvbIn_yr = 0;
+ g_nLastRvbOut_xl = g_nLastRvbOut_xr = 0;
+ MemsetZero(gnDCRRvb_X1);
+ MemsetZero(gnDCRRvb_Y1);
+
+ // Zero internal buffers
+ MemsetZero(g_LateReverb.Diffusion1);
+ MemsetZero(g_LateReverb.Diffusion2);
+ MemsetZero(g_LateReverb.Delay1);
+ MemsetZero(g_LateReverb.Delay2);
+ MemsetZero(g_RefDelay.RefDelayBuffer);
+ MemsetZero(g_RefDelay.PreDifBuffer);
+ MemsetZero(g_RefDelay.RefOut);
+}
+
+
+void CReverb::Initialize(bool bReset, MixSampleInt &gnRvbROfsVol, MixSampleInt &gnRvbLOfsVol, uint32 MixingFreq)
+{
+ if (m_Settings.m_nReverbType >= NUM_REVERBTYPES) m_Settings.m_nReverbType = 0;
+ const SNDMIX_REVERB_PROPERTIES *rvbPreset = &ReverbPresets[m_Settings.m_nReverbType].first;
+
+ if ((rvbPreset != m_currentPreset) || (bReset))
+ {
+ // Reverb output frequency is half of the dry output rate
+ float flOutputFrequency = (float)MixingFreq;
+ EnvironmentReverb rvb;
+
+ // Reset reverb parameters
+ m_currentPreset = rvbPreset;
+ I3dl2_to_Generic(rvbPreset, &rvb, flOutputFrequency,
+ RVBMINREFDELAY, RVBMAXREFDELAY,
+ RVBMINRVBDELAY, RVBMAXRVBDELAY,
+ ( RVBDIF1L_LEN + RVBDIF1R_LEN
+ + RVBDIF2L_LEN + RVBDIF2R_LEN
+ + RVBDLY1L_LEN + RVBDLY1R_LEN
+ + RVBDLY2L_LEN + RVBDLY2R_LEN) / 2);
+
+ // Store reverb decay time (in samples) for reverb auto-shutdown
+ gnReverbDecaySamples = rvb.ReverbDecaySamples;
+
+ // Room attenuation at high frequencies
+ int32 nRoomLP;
+ nRoomLP = OnePoleLowPassCoef(32768, mBToLinear(rvb.RoomHF), 5000, flOutputFrequency);
+ g_RefDelay.nCoeffs.c.l = (int16)nRoomLP;
+ g_RefDelay.nCoeffs.c.r = (int16)nRoomLP;
+
+ // Pre-Diffusion factor (for both reflections and late reverb)
+ g_RefDelay.nPreDifCoeffs.c.l = (int16)(rvb.PreDiffusion*2);
+ g_RefDelay.nPreDifCoeffs.c.r = (int16)(rvb.PreDiffusion*2);
+
+ // Setup individual reflections delay and gains
+ for (uint32 iRef=0; iRef<8; iRef++)
+ {
+ SWRvbReflection &ref = g_RefDelay.Reflections[iRef];
+ ref.DelayDest = rvb.Reflections[iRef].Delay;
+ ref.Delay = ref.DelayDest;
+ ref.Gains[0].c.l = rvb.Reflections[iRef].GainLL;
+ ref.Gains[0].c.r = rvb.Reflections[iRef].GainRL;
+ ref.Gains[1].c.l = rvb.Reflections[iRef].GainLR;
+ ref.Gains[1].c.r = rvb.Reflections[iRef].GainRR;
+ }
+ g_LateReverb.nReverbDelay = rvb.ReverbDelay;
+
+ // Reflections Master Gain
+ uint32 lReflectionsGain = 0;
+ if (rvb.ReflectionsLevel > -9000)
+ {
+ lReflectionsGain = mBToLinear(32768, rvb.ReflectionsLevel);
+ }
+ g_RefDelay.lMasterGain = lReflectionsGain;
+
+ // Late reverb master gain
+ uint32 lReverbGain = 0;
+ if (rvb.ReverbLevel > -9000)
+ {
+ lReverbGain = mBToLinear(32768, rvb.ReverbLevel);
+ }
+ g_LateReverb.lMasterGain = lReverbGain;
+
+ // Late reverb diffusion
+ uint32 nTailDiffusion = rvb.TankDiffusion;
+ if (nTailDiffusion > 0x7f00) nTailDiffusion = 0x7f00;
+ g_LateReverb.nDifCoeffs[0].c.l = (int16)nTailDiffusion;
+ g_LateReverb.nDifCoeffs[0].c.r = (int16)nTailDiffusion;
+ g_LateReverb.nDifCoeffs[1].c.l = (int16)nTailDiffusion;
+ g_LateReverb.nDifCoeffs[1].c.r = (int16)nTailDiffusion;
+ g_LateReverb.Dif2InGains[0].c.l = 0x7000;
+ g_LateReverb.Dif2InGains[0].c.r = 0x1000;
+ g_LateReverb.Dif2InGains[1].c.l = 0x1000;
+ g_LateReverb.Dif2InGains[1].c.r = 0x7000;
+
+ // Late reverb decay time
+ int32 nReverbDecay = rvb.ReverbDecay;
+ Limit(nReverbDecay, 0, 0x7ff0);
+ g_LateReverb.nDecayDC[0].c.l = (int16)nReverbDecay;
+ g_LateReverb.nDecayDC[0].c.r = 0;
+ g_LateReverb.nDecayDC[1].c.l = 0;
+ g_LateReverb.nDecayDC[1].c.r = (int16)nReverbDecay;
+
+ // Late Reverb Decay HF
+ float fReverbDamping = rvb.flReverbDamping * rvb.flReverbDamping;
+ int32 nDampingLowPass;
+
+ nDampingLowPass = OnePoleLowPassCoef(32768, fReverbDamping, 5000, flOutputFrequency);
+ Limit(nDampingLowPass, 0x100, 0x7f00);
+
+ g_LateReverb.nDecayLP[0].c.l = (int16)nDampingLowPass;
+ g_LateReverb.nDecayLP[0].c.r = 0;
+ g_LateReverb.nDecayLP[1].c.l = 0;
+ g_LateReverb.nDecayLP[1].c.r = (int16)nDampingLowPass;
+ }
+ if (bReset)
+ {
+ gnReverbSamples = 0;
+ Shutdown(gnRvbROfsVol, gnRvbLOfsVol);
+ }
+ // Wait at least 5 seconds before shutting down the reverb
+ if (gnReverbDecaySamples < MixingFreq*5)
+ {
+ gnReverbDecaySamples = MixingFreq*5;
+ }
+}
+
+
+void CReverb::TouchReverbSendBuffer(MixSampleInt *MixReverbBuffer, MixSampleInt &gnRvbROfsVol, MixSampleInt &gnRvbLOfsVol, uint32 nSamples)
+{
+ if(!gnReverbSend)
+ { // and we did not clear the buffer yet, do it now because we will get new data
+ StereoFill(MixReverbBuffer, nSamples, gnRvbROfsVol, gnRvbLOfsVol);
+ }
+ gnReverbSend = true; // we will have to process reverb
+}
+
+
+// Reverb
+void CReverb::Process(MixSampleInt *MixSoundBuffer, MixSampleInt *MixReverbBuffer, MixSampleInt &gnRvbROfsVol, MixSampleInt &gnRvbLOfsVol, uint32 nSamples)
+{
+ if((!gnReverbSend) && (!gnReverbSamples))
+ { // no data is sent to reverb and reverb decayed completely
+ return;
+ }
+ if(!gnReverbSend)
+ { // no input data in MixReverbBuffer, so the buffer got not cleared in TouchReverbSendBuffer(), do it now for decay
+ StereoFill(MixReverbBuffer, nSamples, gnRvbROfsVol, gnRvbLOfsVol);
+ }
+
+ uint32 nIn, nOut;
+ // Dynamically adjust reverb master gains
+ int32 lMasterGain;
+ lMasterGain = ((g_RefDelay.lMasterGain * m_Settings.m_nReverbDepth) >> 4);
+ if (lMasterGain > 0x7fff) lMasterGain = 0x7fff;
+ g_RefDelay.ReflectionsGain.c.l = (int16)lMasterGain;
+ g_RefDelay.ReflectionsGain.c.r = (int16)lMasterGain;
+ lMasterGain = ((g_LateReverb.lMasterGain * m_Settings.m_nReverbDepth) >> 4);
+ if (lMasterGain > 0x10000) lMasterGain = 0x10000;
+ g_LateReverb.RvbOutGains[0].c.l = (int16)((lMasterGain+0x7f) >> 3); // l->l
+ g_LateReverb.RvbOutGains[0].c.r = (int16)((lMasterGain+0xff) >> 4); // r->l
+ g_LateReverb.RvbOutGains[1].c.l = (int16)((lMasterGain+0xff) >> 4); // l->r
+ g_LateReverb.RvbOutGains[1].c.r = (int16)((lMasterGain+0x7f) >> 3); // r->r
+ // Process Dry/Wet Mix
+ int32 lMaxRvbGain = (g_RefDelay.lMasterGain > g_LateReverb.lMasterGain) ? g_RefDelay.lMasterGain : g_LateReverb.lMasterGain;
+ if (lMaxRvbGain > 32768) lMaxRvbGain = 32768;
+ int32 lDryVol = (36 - m_Settings.m_nReverbDepth)>>1;
+ if (lDryVol < 8) lDryVol = 8;
+ if (lDryVol > 16) lDryVol = 16;
+ lDryVol = 16 - (((16-lDryVol) * lMaxRvbGain) >> 15);
+ ReverbDryMix(MixSoundBuffer, MixReverbBuffer, lDryVol, nSamples);
+ // Downsample 2x + 1st stage of lowpass filter
+ nIn = ReverbProcessPreFiltering1x(MixReverbBuffer, nSamples);
+ nOut = nIn;
+ // Main reverb processing: split into small chunks (needed for short reverb delays)
+ // Reverb Input + Low-Pass stage #2 + Pre-diffusion
+ if (nIn > 0) ProcessPreDelay(&g_RefDelay, MixReverbBuffer, nIn);
+ // Process Reverb Reflections and Late Reverberation
+ int32 *pRvbOut = MixReverbBuffer;
+ uint32 nRvbSamples = nOut;
+ while (nRvbSamples > 0)
+ {
+ uint32 nPosRef = g_RefDelay.nRefOutPos & SNDMIX_REVERB_DELAY_MASK;
+ uint32 nPosRvb = (nPosRef - g_LateReverb.nReverbDelay) & SNDMIX_REVERB_DELAY_MASK;
+ uint32 nmax1 = (SNDMIX_REVERB_DELAY_MASK+1) - nPosRef;
+ uint32 nmax2 = (SNDMIX_REVERB_DELAY_MASK+1) - nPosRvb;
+ nmax1 = (nmax1 < nmax2) ? nmax1 : nmax2;
+ uint32 n = nRvbSamples;
+ if (n > nmax1) n = nmax1;
+ if (n > 64) n = 64;
+ // Reflections output + late reverb delay
+ ProcessReflections(&g_RefDelay, &g_RefDelay.RefOut[nPosRef], pRvbOut, n);
+ // Late Reverberation
+ ProcessLateReverb(&g_LateReverb, &g_RefDelay.RefOut[nPosRvb], pRvbOut, n);
+ // Update delay positions
+ g_RefDelay.nRefOutPos = (g_RefDelay.nRefOutPos + n) & SNDMIX_REVERB_DELAY_MASK;
+ g_RefDelay.nDelayPos = (g_RefDelay.nDelayPos + n) & SNDMIX_REFLECTIONS_DELAY_MASK;
+ pRvbOut += n*2;
+ nRvbSamples -= n;
+ }
+ // Adjust nDelayPos, in case nIn != nOut
+ g_RefDelay.nDelayPos = (g_RefDelay.nDelayPos - nOut + nIn) & SNDMIX_REFLECTIONS_DELAY_MASK;
+ // Upsample 2x
+ ReverbProcessPostFiltering1x(MixReverbBuffer, MixSoundBuffer, nSamples);
+ // Automatically shut down if needed
+ if(gnReverbSend) gnReverbSamples = gnReverbDecaySamples; // reset decay counter
+ else if(gnReverbSamples > nSamples) gnReverbSamples -= nSamples; // decay
+ else // decayed
+ {
+ Shutdown(gnRvbROfsVol, gnRvbLOfsVol);
+ gnReverbSamples = 0;
+ }
+ gnReverbSend = false; // no input data in MixReverbBuffer
+}
+
+
+void CReverb::ReverbDryMix(int32 * MPT_RESTRICT pDry, int32 * MPT_RESTRICT pWet, int lDryVol, uint32 nSamples)
+{
+ for (uint32 i=0; i<nSamples; i++)
+ {
+ pDry[i*2] += (pWet[i*2]>>4) * lDryVol;
+ pDry[i*2+1] += (pWet[i*2+1]>>4) * lDryVol;
+ }
+}
+
+
+uint32 CReverb::ReverbProcessPreFiltering2x(int32 * MPT_RESTRICT pWet, uint32 nSamples)
+{
+ uint32 nOutSamples = 0;
+ int lowpass = g_RefDelay.nCoeffs.c.l;
+ int y1_l = g_nLastRvbIn_yl, y1_r = g_nLastRvbIn_yr;
+ uint32 n = nSamples;
+
+ if (g_bLastInPresent)
+ {
+ int x1_l = g_nLastRvbIn_xl, x1_r = g_nLastRvbIn_xr;
+ int x2_l = pWet[0], x2_r = pWet[1];
+ x1_l = (x1_l+x2_l)>>13;
+ x1_r = (x1_r+x2_r)>>13;
+ y1_l = x1_l + (((x1_l - y1_l)*lowpass)>>15);
+ y1_r = x1_r + (((x1_r - y1_r)*lowpass)>>15);
+ pWet[0] = y1_l;
+ pWet[1] = y1_r;
+ pWet+=2;
+ n--;
+ nOutSamples = 1;
+ g_bLastInPresent = false;
+ }
+ if (n & 1)
+ {
+ n--;
+ g_nLastRvbIn_xl = pWet[n*2];
+ g_nLastRvbIn_xr = pWet[n*2+1];
+ g_bLastInPresent = true;
+ }
+ n >>= 1;
+ for (uint32 i=0; i<n; i++)
+ {
+ int x1_l = pWet[i*4];
+ int x2_l = pWet[i*4+2];
+ x1_l = (x1_l+x2_l)>>13;
+ int x1_r = pWet[i*4+1];
+ int x2_r = pWet[i*4+3];
+ x1_r = (x1_r+x2_r)>>13;
+ y1_l = x1_l + (((x1_l - y1_l)*lowpass)>>15);
+ y1_r = x1_r + (((x1_r - y1_r)*lowpass)>>15);
+ pWet[i*2] = y1_l;
+ pWet[i*2+1] = y1_r;
+ }
+ g_nLastRvbIn_yl = y1_l;
+ g_nLastRvbIn_yr = y1_r;
+ return nOutSamples + n;
+}
+
+
+uint32 CReverb::ReverbProcessPreFiltering1x(int32 * MPT_RESTRICT pWet, uint32 nSamples)
+{
+ int lowpass = g_RefDelay.nCoeffs.c.l;
+ int y1_l = g_nLastRvbIn_yl, y1_r = g_nLastRvbIn_yr;
+
+ for (uint32 i=0; i<nSamples; i++)
+ {
+ int x_l = pWet[i*2] >> 12;
+ int x_r = pWet[i*2+1] >> 12;
+ y1_l = x_l + (((x_l - y1_l)*lowpass)>>15);
+ y1_r = x_r + (((x_r - y1_r)*lowpass)>>15);
+ pWet[i*2] = y1_l;
+ pWet[i*2+1] = y1_r;
+ }
+ g_nLastRvbIn_yl = y1_l;
+ g_nLastRvbIn_yr = y1_r;
+ return nSamples;
+}
+
+
+void CReverb::ReverbProcessPostFiltering2x(const int32 * MPT_RESTRICT pRvb, int32 * MPT_RESTRICT pDry, uint32 nSamples)
+{
+ uint32 n0 = nSamples, n;
+ int x1_l = g_nLastRvbOut_xl, x1_r = g_nLastRvbOut_xr;
+
+ if (g_bLastOutPresent)
+ {
+ pDry[0] += x1_l;
+ pDry[1] += x1_r;
+ pDry += 2;
+ n0--;
+ g_bLastOutPresent = false;
+ }
+ n = n0 >> 1;
+ for (uint32 i=0; i<n; i++)
+ {
+ int x_l = pRvb[i*2], x_r = pRvb[i*2+1];
+ pDry[i*4] += (x_l + x1_l)>>1;
+ pDry[i*4+1] += (x_r + x1_r)>>1;
+ pDry[i*4+2] += x_l;
+ pDry[i*4+3] += x_r;
+ x1_l = x_l;
+ x1_r = x_r;
+ }
+ if (n0 & 1)
+ {
+ int x_l = pRvb[n*2], x_r = pRvb[n*2+1];
+ pDry[n*4] += (x_l + x1_l)>>1;
+ pDry[n*4+1] += (x_r + x1_r)>>1;
+ x1_l = x_l;
+ x1_r = x_r;
+ g_bLastOutPresent = true;
+ }
+ g_nLastRvbOut_xl = x1_l;
+ g_nLastRvbOut_xr = x1_r;
+}
+
+
+#define DCR_AMOUNT 9
+
+// Stereo Add + DC removal
+void CReverb::ReverbProcessPostFiltering1x(const int32 * MPT_RESTRICT pRvb, int32 * MPT_RESTRICT pDry, uint32 nSamples)
+{
+#if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2)
+ if(CPU::HasFeatureSet(CPU::feature::sse2))
+ {
+ __m128i nDCRRvb_Y1 = Load64SSE(gnDCRRvb_Y1);
+ __m128i nDCRRvb_X1 = Load64SSE(gnDCRRvb_X1);
+ __m128i in = _mm_set1_epi32(0);
+ while(nSamples--)
+ {
+ in = Load64SSE(pRvb);
+ pRvb += 2;
+ // x(n-1) - x(n)
+ __m128i diff = _mm_sub_epi32(nDCRRvb_X1, in);
+ nDCRRvb_X1 = _mm_add_epi32(nDCRRvb_Y1, _mm_sub_epi32(_mm_srai_epi32(diff, DCR_AMOUNT + 1), diff));
+ __m128i out = _mm_add_epi32(Load64SSE(pDry), nDCRRvb_X1);
+ nDCRRvb_Y1 = _mm_sub_epi32(nDCRRvb_X1, _mm_srai_epi32(nDCRRvb_X1, DCR_AMOUNT));
+ nDCRRvb_X1 = in;
+ Store64SSE(pDry, out);
+ pDry += 2;
+ }
+ Store64SSE(gnDCRRvb_X1, in);
+ Store64SSE(gnDCRRvb_Y1, nDCRRvb_Y1);
+ return;
+ }
+#endif
+ int32 X1L = gnDCRRvb_X1[0], X1R = gnDCRRvb_X1[1];
+ int32 Y1L = gnDCRRvb_Y1[0], Y1R = gnDCRRvb_Y1[1];
+ int32 inL = 0, inR = 0;
+ while(nSamples--)
+ {
+ inL = pRvb[0];
+ inR = pRvb[1];
+ pRvb += 2;
+ int32 outL = pDry[0], outR = pDry[1];
+
+ // x(n-1) - x(n)
+ X1L -= inL;
+ X1R -= inR;
+ X1L = X1L / (1 << (DCR_AMOUNT + 1)) - X1L;
+ X1R = X1R / (1 << (DCR_AMOUNT + 1)) - X1R;
+ Y1L += X1L;
+ Y1R += X1R;
+ // add to dry mix
+ outL += Y1L;
+ outR += Y1R;
+ Y1L -= Y1L / (1 << DCR_AMOUNT);
+ Y1R -= Y1R / (1 << DCR_AMOUNT);
+ X1L = inL;
+ X1R = inR;
+
+ pDry[0] = outL;
+ pDry[1] = outR;
+ pDry += 2;
+ }
+ gnDCRRvb_Y1[0] = Y1L;
+ gnDCRRvb_Y1[1] = Y1R;
+ gnDCRRvb_X1[0] = inL;
+ gnDCRRvb_X1[1] = inR;
+}
+
+
+void CReverb::ReverbDCRemoval(int32 * MPT_RESTRICT pBuffer, uint32 nSamples)
+{
+#if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2)
+ if(CPU::HasFeatureSet(CPU::feature::sse2))
+ {
+ __m128i nDCRRvb_Y1 = Load64SSE(gnDCRRvb_Y1);
+ __m128i nDCRRvb_X1 = Load64SSE(gnDCRRvb_X1);
+ while(nSamples--)
+ {
+ __m128i in = Load64SSE(pBuffer);
+ __m128i diff = _mm_sub_epi32(nDCRRvb_X1, in);
+ __m128i out = _mm_add_epi32(nDCRRvb_Y1, _mm_sub_epi32(_mm_srai_epi32(diff, DCR_AMOUNT + 1), diff));
+ Store64SSE(pBuffer, out);
+ pBuffer += 2;
+ nDCRRvb_Y1 = _mm_sub_epi32(out, _mm_srai_epi32(out, DCR_AMOUNT));
+ nDCRRvb_X1 = in;
+ }
+ Store64SSE(gnDCRRvb_X1, nDCRRvb_X1);
+ Store64SSE(gnDCRRvb_Y1, nDCRRvb_Y1);
+ return;
+ }
+#endif
+ int32 X1L = gnDCRRvb_X1[0], X1R = gnDCRRvb_X1[1];
+ int32 Y1L = gnDCRRvb_Y1[0], Y1R = gnDCRRvb_Y1[1];
+ int32 inL = 0, inR = 0;
+ while(nSamples--)
+ {
+ inL = pBuffer[0];
+ inR = pBuffer[1];
+ // x(n-1) - x(n)
+ X1L -= inL;
+ X1R -= inR;
+ X1L = X1L / (1 << (DCR_AMOUNT + 1)) - X1L;
+ X1R = X1R / (1 << (DCR_AMOUNT + 1)) - X1R;
+ Y1L += X1L;
+ Y1R += X1R;
+ pBuffer[0] = Y1L;
+ pBuffer[1] = Y1R;
+ pBuffer += 2;
+ Y1L -= Y1L / (1 << DCR_AMOUNT);
+ Y1R -= Y1R / (1 << DCR_AMOUNT);
+ X1L = inL;
+ X1R = inR;
+ }
+ gnDCRRvb_Y1[0] = Y1L;
+ gnDCRRvb_Y1[1] = Y1R;
+ gnDCRRvb_X1[0] = inL;
+ gnDCRRvb_X1[1] = inR;
+}
+
+
+//////////////////////////////////////////////////////////////////////////
+//
+// Pre-Delay:
+//
+// 1. Saturate and low-pass the reverb input (stage 2 of roomHF)
+// 2. Process pre-diffusion
+// 3. Insert the result in the reflections delay buffer
+//
+
+// Save some typing
+static MPT_FORCEINLINE int32 Clamp16(int32 x) { return Clamp(x, std::numeric_limits<int16>::min(), std::numeric_limits<int16>::max()); }
+
+void CReverb::ProcessPreDelay(SWRvbRefDelay * MPT_RESTRICT pPreDelay, const int32 * MPT_RESTRICT pIn, uint32 nSamples)
+{
+ uint32 preDifPos = pPreDelay->nPreDifPos;
+ uint32 delayPos = pPreDelay->nDelayPos - 1;
+#if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2)
+ if(CPU::HasFeatureSet(CPU::feature::sse2))
+ {
+ __m128i coeffs = _mm_cvtsi32_si128(pPreDelay->nCoeffs.lr);
+ __m128i history = _mm_cvtsi32_si128(pPreDelay->History.lr);
+ __m128i preDifCoeffs = _mm_cvtsi32_si128(pPreDelay->nPreDifCoeffs.lr);
+ while(nSamples--)
+ {
+ __m128i in32 = Load64SSE(pIn); // 16-bit unsaturated reverb input [ r | l ]
+ __m128i inSat = _mm_packs_epi32(in32, in32); // [ r | l | r | l ] (16-bit saturated)
+ pIn += 2;
+ // Low-pass
+ __m128i lp = _mm_mulhi_epi16(_mm_subs_epi16(history, inSat), coeffs);
+ __m128i preDif = _mm_cvtsi32_si128(pPreDelay->PreDifBuffer[preDifPos].lr);
+ history = _mm_adds_epi16(_mm_adds_epi16(lp, lp), inSat);
+ // Pre-Diffusion
+ preDifPos = (preDifPos + 1) & SNDMIX_PREDIFFUSION_DELAY_MASK;
+ delayPos = (delayPos + 1) & SNDMIX_REFLECTIONS_DELAY_MASK;
+ __m128i preDif2 = _mm_subs_epi16(history, _mm_mulhi_epi16(preDif, preDifCoeffs));
+ pPreDelay->PreDifBuffer[preDifPos].lr = _mm_cvtsi128_si32(preDif2);
+ pPreDelay->RefDelayBuffer[delayPos].lr = _mm_cvtsi128_si32(_mm_adds_epi16(_mm_mulhi_epi16(preDifCoeffs, preDif2), preDif));
+ }
+ pPreDelay->nPreDifPos = preDifPos;
+ pPreDelay->History.lr = _mm_cvtsi128_si32(history);
+ return;
+ }
+#endif
+ const int32 coeffsL = pPreDelay->nCoeffs.c.l, coeffsR = pPreDelay->nCoeffs.c.r;
+ const int32 preDifCoeffsL = pPreDelay->nPreDifCoeffs.c.l, preDifCoeffsR = pPreDelay->nPreDifCoeffs.c.r;
+ int16 historyL = pPreDelay->History.c.l, historyR = pPreDelay->History.c.r;
+ while(nSamples--)
+ {
+ int32 inL = Clamp16(pIn[0]);
+ int32 inR = Clamp16(pIn[1]);
+ pIn += 2;
+ // Low-pass
+ int32 lpL = (Clamp16(historyL - inL) * coeffsL) / 65536;
+ int32 lpR = (Clamp16(historyR - inR) * coeffsR) / 65536;
+ historyL = mpt::saturate_cast<int16>(Clamp16(lpL + lpL) + inL);
+ historyR = mpt::saturate_cast<int16>(Clamp16(lpR + lpR) + inR);
+ // Pre-Diffusion
+ int32 preDifL = pPreDelay->PreDifBuffer[preDifPos].c.l;
+ int32 preDifR = pPreDelay->PreDifBuffer[preDifPos].c.r;
+ preDifPos = (preDifPos + 1) & SNDMIX_PREDIFFUSION_DELAY_MASK;
+ delayPos = (delayPos + 1) & SNDMIX_REFLECTIONS_DELAY_MASK;
+ int16 preDif2L = mpt::saturate_cast<int16>(historyL - preDifL * preDifCoeffsL / 65536);
+ int16 preDif2R = mpt::saturate_cast<int16>(historyR - preDifR * preDifCoeffsR / 65536);
+ pPreDelay->PreDifBuffer[preDifPos].c.l = preDif2L;
+ pPreDelay->PreDifBuffer[preDifPos].c.r = preDif2R;
+ pPreDelay->RefDelayBuffer[delayPos].c.l = mpt::saturate_cast<int16>(preDifCoeffsL * preDif2L / 65536 + preDifL);
+ pPreDelay->RefDelayBuffer[delayPos].c.r = mpt::saturate_cast<int16>(preDifCoeffsR * preDif2R / 65536 + preDifR);
+ }
+ pPreDelay->nPreDifPos = preDifPos;
+ pPreDelay->History.c.l = historyL;
+ pPreDelay->History.c.r = historyR;
+}
+
+
+////////////////////////////////////////////////////////////////////
+//
+// ProcessReflections:
+// First stage:
+// - process 4 reflections, output to pRefOut
+// - output results to pRefOut
+// Second stage:
+// - process another 3 reflections
+// - sum with pRefOut
+// - apply reflections master gain and accumulate in the given output
+//
+
+void CReverb::ProcessReflections(SWRvbRefDelay * MPT_RESTRICT pPreDelay, LR16 * MPT_RESTRICT pRefOut, int32 * MPT_RESTRICT pOut, uint32 nSamples)
+{
+#if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2)
+ if(CPU::HasFeatureSet(CPU::feature::sse2))
+ {
+ union
+ {
+ __m128i xmm;
+ int16 i[8];
+ } pos;
+ const LR16 *refDelayBuffer = pPreDelay->RefDelayBuffer;
+#define GETDELAY(x) static_cast<int16>(pPreDelay->Reflections[x].Delay)
+ __m128i delayPos = _mm_set_epi16(GETDELAY(7), GETDELAY(6), GETDELAY(5), GETDELAY(4), GETDELAY(3), GETDELAY(2), GETDELAY(1), GETDELAY(0));
+#undef GETDELAY
+ delayPos = _mm_sub_epi16(_mm_set1_epi16(static_cast<int16>(pPreDelay->nDelayPos - 1)), delayPos);
+ __m128i gain12 = _mm_unpacklo_epi64(Load64SSE(pPreDelay->Reflections[0].Gains), Load64SSE(pPreDelay->Reflections[1].Gains));
+ __m128i gain34 = _mm_unpacklo_epi64(Load64SSE(pPreDelay->Reflections[2].Gains), Load64SSE(pPreDelay->Reflections[3].Gains));
+ __m128i gain56 = _mm_unpacklo_epi64(Load64SSE(pPreDelay->Reflections[4].Gains), Load64SSE(pPreDelay->Reflections[5].Gains));
+ __m128i gain78 = _mm_unpacklo_epi64(Load64SSE(pPreDelay->Reflections[6].Gains), Load64SSE(pPreDelay->Reflections[7].Gains));
+ // For 28-bit final output: 16+15-3 = 28
+ __m128i refGain = _mm_srai_epi32(_mm_set_epi32(0, 0, pPreDelay->ReflectionsGain.c.r, pPreDelay->ReflectionsGain.c.l), 3);
+ __m128i delayInc = _mm_set1_epi16(1), delayMask = _mm_set1_epi16(SNDMIX_REFLECTIONS_DELAY_MASK);
+ while(nSamples--)
+ {
+ delayPos = _mm_and_si128(_mm_add_epi16(delayInc, delayPos), delayMask);
+ _mm_storeu_si128(&pos.xmm, delayPos);
+ __m128i ref12 = _mm_set_epi32(refDelayBuffer[pos.i[1]].lr, refDelayBuffer[pos.i[1]].lr, refDelayBuffer[pos.i[0]].lr, refDelayBuffer[pos.i[0]].lr);
+ __m128i ref34 = _mm_set_epi32(refDelayBuffer[pos.i[3]].lr, refDelayBuffer[pos.i[3]].lr, refDelayBuffer[pos.i[2]].lr, refDelayBuffer[pos.i[2]].lr);
+ __m128i ref56 = _mm_set_epi32(refDelayBuffer[pos.i[5]].lr, refDelayBuffer[pos.i[5]].lr, refDelayBuffer[pos.i[4]].lr, refDelayBuffer[pos.i[4]].lr);
+ __m128i ref78 = _mm_set_epi32(0, 0, refDelayBuffer[pos.i[6]].lr, refDelayBuffer[pos.i[6]].lr);
+ // First stage
+ __m128i refOut1 = _mm_add_epi32(_mm_madd_epi16(ref12, gain12), _mm_madd_epi16(ref34, gain34));
+ refOut1 = _mm_srai_epi32(_mm_add_epi32(refOut1, _mm_shuffle_epi32(refOut1, _MM_SHUFFLE(1, 0, 3, 2))), 15);
+
+ // Second stage
+ __m128i refOut2 = _mm_add_epi32(_mm_madd_epi16(ref56, gain56), _mm_madd_epi16(ref78, gain78));
+ refOut2 = _mm_srai_epi32(_mm_add_epi32(refOut2, _mm_shuffle_epi32(refOut2, _MM_SHUFFLE(1, 0, 3, 2))), 15);
+
+ // Saturate to 16-bit and sum stages
+ __m128i refOut = _mm_adds_epi16(_mm_packs_epi32(refOut1, refOut1), _mm_packs_epi32(refOut2, refOut2));
+ pRefOut->lr = _mm_cvtsi128_si32(refOut);
+ pRefOut++;
+
+ __m128i out = _mm_madd_epi16(_mm_unpacklo_epi16(refOut, refOut), refGain); // Apply reflections gain
+ // At this, point, this is the only output of the reverb
+ Store64SSE(pOut, out);
+ pOut += 2;
+ }
+ return;
+ }
+#endif
+ int pos[7];
+ for(int i = 0; i < 7; i++)
+ pos[i] = pPreDelay->nDelayPos - pPreDelay->Reflections[i].Delay - 1;
+ // For 28-bit final output: 16+15-3 = 28
+ int16 refGain = pPreDelay->ReflectionsGain.c.l / (1 << 3);
+ while(nSamples--)
+ {
+ // First stage
+ int32 refOutL = 0, refOutR = 0;
+ for(int i = 0; i < 4; i++)
+ {
+ pos[i] = (pos[i] + 1) & SNDMIX_REFLECTIONS_DELAY_MASK;
+ int16 refL = pPreDelay->RefDelayBuffer[pos[i]].c.l, refR = pPreDelay->RefDelayBuffer[pos[i]].c.r;
+ refOutL += refL * pPreDelay->Reflections[i].Gains[0].c.l + refR * pPreDelay->Reflections[i].Gains[0].c.r;
+ refOutR += refL * pPreDelay->Reflections[i].Gains[1].c.l + refR * pPreDelay->Reflections[i].Gains[1].c.r;
+ }
+ int16 stage1l = mpt::saturate_cast<int16>(refOutL / (1 << 15));
+ int16 stage1r = mpt::saturate_cast<int16>(refOutR / (1 << 15));
+ // Second stage
+ refOutL = 0;
+ refOutR = 0;
+ for(int i = 4; i < 7; i++)
+ {
+ pos[i] = (pos[i] + 1) & SNDMIX_REFLECTIONS_DELAY_MASK;
+ int16 refL = pPreDelay->RefDelayBuffer[pos[i]].c.l, refR = pPreDelay->RefDelayBuffer[pos[i]].c.r;
+ refOutL += refL * pPreDelay->Reflections[i].Gains[0].c.l + refR * pPreDelay->Reflections[i].Gains[0].c.r;
+ refOutR += refL * pPreDelay->Reflections[i].Gains[1].c.l + refR * pPreDelay->Reflections[i].Gains[1].c.r;
+ }
+ pOut[0] = (pRefOut->c.l = mpt::saturate_cast<int16>(stage1l + refOutL / (1 << 15))) * refGain;
+ pOut[1] = (pRefOut->c.r = mpt::saturate_cast<int16>(stage1r + refOutR / (1 << 15))) * refGain;
+ pRefOut++;
+ pOut += 2;
+ }
+}
+
+
+//////////////////////////////////////////////////////////////////////////
+//
+// Late reverberation (with SW reflections)
+//
+
+void CReverb::ProcessLateReverb(SWLateReverb * MPT_RESTRICT pReverb, LR16 * MPT_RESTRICT pRefOut, int32 * MPT_RESTRICT pMixOut, uint32 nSamples)
+{
+ // Calculate delay line offset from current delay position
+ #define DELAY_OFFSET(x) ((delayPos - (x)) & RVBDLY_MASK)
+
+#if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2)
+ if(CPU::HasFeatureSet(CPU::feature::sse2))
+ {
+ int delayPos = pReverb->nDelayPos & RVBDLY_MASK;
+ __m128i rvbOutGains = Load64SSE(pReverb->RvbOutGains);
+ __m128i difCoeffs = Load64SSE(pReverb->nDifCoeffs);
+ __m128i decayLP = Load64SSE(pReverb->nDecayLP);
+ __m128i lpHistory = Load64SSE(pReverb->LPHistory);
+ while(nSamples--)
+ {
+ __m128i refIn = _mm_cvtsi32_si128(pRefOut->lr); // 16-bit stereo input
+ pRefOut++;
+
+ __m128i delay2 = _mm_unpacklo_epi32(
+ _mm_cvtsi32_si128(pReverb->Delay2[DELAY_OFFSET(RVBDLY2L_LEN)].lr),
+ _mm_cvtsi32_si128(pReverb->Delay2[DELAY_OFFSET(RVBDLY2R_LEN)].lr));
+
+ // Unsigned to avoid sign extension
+ uint16 diff1L = pReverb->Diffusion1[DELAY_OFFSET(RVBDIF1L_LEN)].c.l;
+ uint16 diff1R = pReverb->Diffusion1[DELAY_OFFSET(RVBDIF1R_LEN)].c.r;
+ int32 diffusion1 = diff1L | (diff1R << 16); // diffusion1 history
+
+ uint16 diff2L = pReverb->Diffusion2[DELAY_OFFSET(RVBDIF2L_LEN)].c.l;
+ uint16 diff2R = pReverb->Diffusion2[DELAY_OFFSET(RVBDIF2R_LEN)].c.r;
+ int32 diffusion2 = diff2L | (diff2R << 16); // diffusion2 history
+
+ __m128i lpDecay = _mm_mulhi_epi16(_mm_subs_epi16(lpHistory, delay2), decayLP);
+ lpHistory = _mm_adds_epi16(_mm_adds_epi16(lpDecay, lpDecay), delay2); // Low-passed decay
+
+ // Apply decay gain
+ __m128i histDecay = _mm_srai_epi32(_mm_madd_epi16(Load64SSE(pReverb->nDecayDC), lpHistory), 15);
+ __m128i histDecayPacked = _mm_shuffle_epi32(_mm_packs_epi32(histDecay, histDecay), _MM_SHUFFLE(2, 0, 2, 0));
+ __m128i histDecayIn = _mm_adds_epi16(_mm_shuffle_epi32(_mm_packs_epi32(histDecay, histDecay), _MM_SHUFFLE(2, 0, 2, 0)), _mm_srai_epi16(_mm_unpacklo_epi32(refIn, refIn), 2));
+ __m128i histDecayInDiff = _mm_subs_epi16(histDecayIn, _mm_mulhi_epi16(_mm_cvtsi32_si128(diffusion1), difCoeffs));
+ pReverb->Diffusion1[delayPos].lr = _mm_cvtsi128_si32(histDecayInDiff);
+
+ __m128i delay1Out = _mm_adds_epi16(_mm_mulhi_epi16(difCoeffs, histDecayInDiff), _mm_cvtsi32_si128(diffusion1));
+ // Insert the diffusion output in the reverb delay line
+ pReverb->Delay1[delayPos].lr = _mm_cvtsi128_si32(delay1Out);
+ __m128i histDecayInDelay = _mm_adds_epi16(histDecayIn, _mm_unpacklo_epi32(delay1Out, delay1Out));
+
+ // Input to second diffuser
+ __m128i delay1 = _mm_unpacklo_epi32(
+ _mm_cvtsi32_si128(pReverb->Delay1[DELAY_OFFSET(RVBDLY1L_LEN)].lr),
+ _mm_cvtsi32_si128(pReverb->Delay1[DELAY_OFFSET(RVBDLY1R_LEN)].lr));
+
+ __m128i delay1Gains = _mm_srai_epi32(_mm_madd_epi16(delay1, Load64SSE(pReverb->Dif2InGains)), 15);
+ __m128i delay1GainsSat = _mm_shuffle_epi32(_mm_packs_epi32(delay1Gains, delay1Gains), _MM_SHUFFLE(2, 0, 2, 0));
+ __m128i histDelay1 = _mm_subs_epi16(_mm_adds_epi16(histDecayInDelay, delay1), delay1GainsSat); // accumulate with reverb output
+ __m128i diff2out = _mm_subs_epi16(delay1GainsSat, _mm_mulhi_epi16(_mm_cvtsi32_si128(diffusion2), difCoeffs));
+ __m128i diff2outCoeffs = _mm_mulhi_epi16(difCoeffs, diff2out);
+ pReverb->Diffusion2[delayPos].lr = _mm_cvtsi128_si32(diff2out);
+
+ __m128i mixOut = Load64SSE(pMixOut);
+ __m128i delay2out = _mm_adds_epi16(diff2outCoeffs, _mm_cvtsi32_si128(diffusion2));
+ pReverb->Delay2[delayPos].lr = _mm_cvtsi128_si32(delay2out);
+ delayPos = (delayPos + 1) & RVBDLY_MASK;
+ // Accumulate with reverb output
+ __m128i out = _mm_add_epi32(_mm_madd_epi16(_mm_adds_epi16(histDelay1, delay2out), rvbOutGains), mixOut);
+ Store64SSE(pMixOut, out);
+ pMixOut += 2;
+ }
+ Store64SSE(pReverb->LPHistory, lpHistory);
+ pReverb->nDelayPos = delayPos;
+ return;
+ }
+#endif
+ int delayPos = pReverb->nDelayPos & RVBDLY_MASK;
+ while(nSamples--)
+ {
+ int16 refInL = pRefOut->c.l, refInR = pRefOut->c.r;
+ pRefOut++;
+
+ int32 delay2LL = pReverb->Delay2[DELAY_OFFSET(RVBDLY2L_LEN)].c.l, delay2LR = pReverb->Delay2[DELAY_OFFSET(RVBDLY2L_LEN)].c.r;
+ int32 delay2RL = pReverb->Delay2[DELAY_OFFSET(RVBDLY2R_LEN)].c.l, delay2RR = pReverb->Delay2[DELAY_OFFSET(RVBDLY2R_LEN)].c.r;
+
+ int32 diff1L = pReverb->Diffusion1[DELAY_OFFSET(RVBDIF1L_LEN)].c.l;
+ int32 diff1R = pReverb->Diffusion1[DELAY_OFFSET(RVBDIF1R_LEN)].c.r;
+
+ int32 diff2L = pReverb->Diffusion2[DELAY_OFFSET(RVBDIF2L_LEN)].c.l;
+ int32 diff2R = pReverb->Diffusion2[DELAY_OFFSET(RVBDIF2R_LEN)].c.r;
+
+ int32 lpDecayLL = Clamp16(pReverb->LPHistory[0].c.l - delay2LL) * pReverb->nDecayLP[0].c.l / 65536;
+ int32 lpDecayLR = Clamp16(pReverb->LPHistory[0].c.r - delay2LR) * pReverb->nDecayLP[0].c.r / 65536;
+ int32 lpDecayRL = Clamp16(pReverb->LPHistory[1].c.l - delay2RL) * pReverb->nDecayLP[1].c.l / 65536;
+ int32 lpDecayRR = Clamp16(pReverb->LPHistory[1].c.r - delay2RR) * pReverb->nDecayLP[1].c.r / 65536;
+ // Low-passed decay
+ pReverb->LPHistory[0].c.l = mpt::saturate_cast<int16>(Clamp16(lpDecayLL + lpDecayLL) + delay2LL);
+ pReverb->LPHistory[0].c.r = mpt::saturate_cast<int16>(Clamp16(lpDecayLR + lpDecayLR) + delay2LR);
+ pReverb->LPHistory[1].c.l = mpt::saturate_cast<int16>(Clamp16(lpDecayRL + lpDecayRL) + delay2RL);
+ pReverb->LPHistory[1].c.r = mpt::saturate_cast<int16>(Clamp16(lpDecayRR + lpDecayRR) + delay2RR);
+
+ // Apply decay gain
+ int32 histDecayL = Clamp16((int32)pReverb->nDecayDC[0].c.l * pReverb->LPHistory[0].c.l / (1 << 15));
+ int32 histDecayR = Clamp16((int32)pReverb->nDecayDC[1].c.r * pReverb->LPHistory[1].c.r / (1 << 15));
+ int32 histDecayInL = Clamp16(histDecayL + refInL / 4);
+ int32 histDecayInR = Clamp16(histDecayR + refInR / 4);
+ int32 histDecayInDiffL = Clamp16(histDecayInL - diff1L * pReverb->nDifCoeffs[0].c.l / 65536);
+ int32 histDecayInDiffR = Clamp16(histDecayInR - diff1R * pReverb->nDifCoeffs[0].c.r / 65536);
+ pReverb->Diffusion1[delayPos].c.l = static_cast<int16>(histDecayInDiffL);
+ pReverb->Diffusion1[delayPos].c.r = static_cast<int16>(histDecayInDiffR);
+
+ int32 delay1L = Clamp16(pReverb->nDifCoeffs[0].c.l * histDecayInDiffL / 65536 + diff1L);
+ int32 delay1R = Clamp16(pReverb->nDifCoeffs[0].c.r * histDecayInDiffR / 65536 + diff1R);
+ // Insert the diffusion output in the reverb delay line
+ pReverb->Delay1[delayPos].c.l = static_cast<int16>(delay1L);
+ pReverb->Delay1[delayPos].c.r = static_cast<int16>(delay1R);
+ int32 histDecayInDelayL = Clamp16(histDecayInL + delay1L);
+ int32 histDecayInDelayR = Clamp16(histDecayInR + delay1R);
+
+ // Input to second diffuser
+ int32 delay1LL = pReverb->Delay1[DELAY_OFFSET(RVBDLY1L_LEN)].c.l, delay1LR = pReverb->Delay1[DELAY_OFFSET(RVBDLY1L_LEN)].c.r;
+ int32 delay1RL = pReverb->Delay1[DELAY_OFFSET(RVBDLY1R_LEN)].c.l, delay1RR = pReverb->Delay1[DELAY_OFFSET(RVBDLY1R_LEN)].c.r;
+
+ int32 delay1GainsL = Clamp16((delay1LL * pReverb->Dif2InGains[0].c.l + delay1LR * pReverb->Dif2InGains[0].c.r) / (1 << 15));
+ int32 delay1GainsR = Clamp16((delay1RL * pReverb->Dif2InGains[1].c.l + delay1RR * pReverb->Dif2InGains[1].c.r) / (1 << 15));
+
+ // accumulate with reverb output
+ int32 histDelay1LL = Clamp16(Clamp16(histDecayInDelayL + delay1LL) - delay1GainsL);
+ int32 histDelay1LR = Clamp16(Clamp16(histDecayInDelayR + delay1LR) - delay1GainsR);
+ int32 histDelay1RL = Clamp16(Clamp16(histDecayInDelayL + delay1RL) - delay1GainsL);
+ int32 histDelay1RR = Clamp16(Clamp16(histDecayInDelayR + delay1RR) - delay1GainsR);
+ int32 diff2outL = Clamp16(delay1GainsL - diff2L * pReverb->nDifCoeffs[0].c.l / 65536);
+ int32 diff2outR = Clamp16(delay1GainsR - diff2R * pReverb->nDifCoeffs[0].c.r / 65536);
+ int32 diff2outCoeffsL = pReverb->nDifCoeffs[0].c.l * diff2outL / 65536;
+ int32 diff2outCoeffsR = pReverb->nDifCoeffs[0].c.r * diff2outR / 65536;
+ pReverb->Diffusion2[delayPos].c.l = static_cast<int16>(diff2outL);
+ pReverb->Diffusion2[delayPos].c.r = static_cast<int16>(diff2outR);
+
+ int32 delay2outL = Clamp16(diff2outCoeffsL + diff2L);
+ int32 delay2outR = Clamp16(diff2outCoeffsR + diff2R);
+ pReverb->Delay2[delayPos].c.l = static_cast<int16>(delay2outL);
+ pReverb->Delay2[delayPos].c.r = static_cast<int16>(delay2outR);
+ delayPos = (delayPos + 1) & RVBDLY_MASK;
+ // Accumulate with reverb output
+ pMixOut[0] += Clamp16(histDelay1LL + delay2outL) * pReverb->RvbOutGains[0].c.l + Clamp16(histDelay1LR + delay2outR) * pReverb->RvbOutGains[0].c.r;
+ pMixOut[1] += Clamp16(histDelay1RL + Clamp16(diff2outCoeffsL)) * pReverb->RvbOutGains[1].c.l + Clamp16(histDelay1RR + Clamp16(diff2outCoeffsR)) * pReverb->RvbOutGains[1].c.r;
+ pMixOut += 2;
+ }
+ pReverb->nDelayPos = delayPos;
+
+ #undef DELAY_OFFSET
+}
+
+
+#else
+
+
+MPT_MSVC_WORKAROUND_LNK4221(Reverb)
+
+
+#endif // NO_REVERB
+
+
+OPENMPT_NAMESPACE_END
+