aboutsummaryrefslogtreecommitdiff
path: root/Src/external_dependencies/openmpt-trunk/mptrack/Autotune.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Src/external_dependencies/openmpt-trunk/mptrack/Autotune.cpp')
-rw-r--r--Src/external_dependencies/openmpt-trunk/mptrack/Autotune.cpp414
1 files changed, 414 insertions, 0 deletions
diff --git a/Src/external_dependencies/openmpt-trunk/mptrack/Autotune.cpp b/Src/external_dependencies/openmpt-trunk/mptrack/Autotune.cpp
new file mode 100644
index 00000000..41e49be7
--- /dev/null
+++ b/Src/external_dependencies/openmpt-trunk/mptrack/Autotune.cpp
@@ -0,0 +1,414 @@
+/*
+ * Autotune.cpp
+ * ------------
+ * Purpose: Class for tuning a sample to a given base note automatically.
+ * Notes : (currently none)
+ * Authors: OpenMPT Devs
+ * The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
+ */
+
+
+#include "stdafx.h"
+#include "Autotune.h"
+#include <math.h>
+#include "../common/misc_util.h"
+#include "../soundlib/Sndfile.h"
+#include <algorithm>
+#include <execution>
+#include <numeric>
+#if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2)
+#include <emmintrin.h>
+#endif
+
+
+OPENMPT_NAMESPACE_BEGIN
+
+
+// The more bins, the more autocorrelations are done and the more precise the result is.
+#define BINS_PER_NOTE 32
+#define MIN_SAMPLE_LENGTH 2
+
+#define START_NOTE (24 * BINS_PER_NOTE) // C-2
+#define END_NOTE (96 * BINS_PER_NOTE) // C-8
+#define HISTORY_BINS (12 * BINS_PER_NOTE) // One octave
+
+
+static double FrequencyToNote(double freq, double pitchReference)
+{
+ return ((12.0 * (log(freq / (pitchReference / 2.0)) / log(2.0))) + 57.0);
+}
+
+
+static double NoteToFrequency(double note, double pitchReference)
+{
+ return pitchReference * pow(2.0, (note - 69.0) / 12.0);
+}
+
+
+// Calculate the amount of samples for autocorrelation shifting for a given note
+static SmpLength NoteToShift(uint32 sampleFreq, int note, double pitchReference)
+{
+ const double fundamentalFrequency = NoteToFrequency((double)note / BINS_PER_NOTE, pitchReference);
+ return std::max(mpt::saturate_round<SmpLength>((double)sampleFreq / fundamentalFrequency), SmpLength(1));
+}
+
+
+// Create an 8-Bit sample buffer with loop unrolling and mono conversion for autocorrelation.
+template <class T>
+void Autotune::CopySamples(const T* origSample, SmpLength sampleLoopStart, SmpLength sampleLoopEnd)
+{
+ const uint8 channels = m_sample.GetNumChannels();
+ sampleLoopStart *= channels;
+ sampleLoopEnd *= channels;
+
+ for(SmpLength i = 0, pos = 0; i < m_sampleLength; i++, pos += channels)
+ {
+ if(pos >= sampleLoopEnd)
+ {
+ pos = sampleLoopStart;
+ }
+
+ const T* smp = origSample + pos;
+
+ int32 data = 0; // More than enough for 256 channels... :)
+ for(uint8 chn = 0; chn < channels; chn++)
+ {
+ // We only want the MSB.
+ data += static_cast<int32>(smp[chn] >> ((sizeof(T) - 1) * 8));
+ }
+
+ data /= channels;
+
+ m_sampleData[i] = static_cast<int16>(data);
+ }
+}
+
+
+// Prepare a sample buffer for autocorrelation
+bool Autotune::PrepareSample(SmpLength maxShift)
+{
+
+ // Determine which parts of the sample should be examined.
+ SmpLength sampleOffset = 0, sampleLoopStart = 0, sampleLoopEnd = m_sample.nLength;
+ if(m_selectionEnd >= sampleLoopStart + MIN_SAMPLE_LENGTH)
+ {
+ // A selection has been specified: Examine selection
+ sampleOffset = m_selectionStart;
+ sampleLoopStart = 0;
+ sampleLoopEnd = m_selectionEnd - m_selectionStart;
+ } else if(m_sample.uFlags[CHN_SUSTAINLOOP] && m_sample.nSustainEnd >= m_sample.nSustainStart + MIN_SAMPLE_LENGTH)
+ {
+ // A sustain loop is set: Examine sample up to sustain loop and, if necessary, execute the loop several times
+ sampleOffset = 0;
+ sampleLoopStart = m_sample.nSustainStart;
+ sampleLoopEnd = m_sample.nSustainEnd;
+ } else if(m_sample.uFlags[CHN_LOOP] && m_sample.nLoopEnd >= m_sample.nLoopStart + MIN_SAMPLE_LENGTH)
+ {
+ // A normal loop is set: Examine sample up to loop and, if necessary, execute the loop several times
+ sampleOffset = 0;
+ sampleLoopStart = m_sample.nLoopStart;
+ sampleLoopEnd = m_sample.nLoopEnd;
+ }
+
+ // We should analyse at least a one second (= GetSampleRate() samples) long sample.
+ m_sampleLength = std::max(sampleLoopEnd, static_cast<SmpLength>(m_sample.GetSampleRate(m_modType))) + maxShift;
+ m_sampleLength = (m_sampleLength + 7) & ~7;
+
+ if(m_sampleData != nullptr)
+ {
+ delete[] m_sampleData;
+ }
+ m_sampleData = new int16[m_sampleLength];
+ if(m_sampleData == nullptr)
+ {
+ return false;
+ }
+
+ // Copy sample over.
+ switch(m_sample.GetElementarySampleSize())
+ {
+ case 1:
+ CopySamples(m_sample.sample8() + sampleOffset * m_sample.GetNumChannels(), sampleLoopStart, sampleLoopEnd);
+ return true;
+
+ case 2:
+ CopySamples(m_sample.sample16() + sampleOffset * m_sample.GetNumChannels(), sampleLoopStart, sampleLoopEnd);
+ return true;
+ }
+
+ return false;
+
+}
+
+
+bool Autotune::CanApply() const
+{
+ return (m_sample.HasSampleData() && m_sample.nLength >= MIN_SAMPLE_LENGTH) || m_sample.uFlags[CHN_ADLIB];
+}
+
+
+namespace
+{
+
+
+struct AutotuneHistogramEntry
+{
+ int index;
+ uint64 sum;
+};
+
+struct AutotuneHistogram
+{
+ std::array<uint64, HISTORY_BINS> histogram{};
+};
+
+struct AutotuneContext
+{
+ const int16 *m_sampleData;
+ double pitchReference;
+ SmpLength processLength;
+ uint32 sampleFreq;
+};
+
+#if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2)
+
+static inline AutotuneHistogramEntry CalculateNoteHistogramSSE2(int note, AutotuneContext ctx)
+{
+ const SmpLength autocorrShift = NoteToShift(ctx.sampleFreq, note, ctx.pitchReference);
+ uint64 autocorrSum = 0;
+ {
+ const __m128i *normalData = reinterpret_cast<const __m128i *>(ctx.m_sampleData);
+ const __m128i *shiftedData = reinterpret_cast<const __m128i *>(ctx.m_sampleData + autocorrShift);
+ for(SmpLength i = ctx.processLength / 8; i != 0; i--)
+ {
+ __m128i normal = _mm_loadu_si128(normalData++);
+ __m128i shifted = _mm_loadu_si128(shiftedData++);
+ __m128i diff = _mm_sub_epi16(normal, shifted); // 8 16-bit differences
+ __m128i squares = _mm_madd_epi16(diff, diff); // Multiply and add: 4 32-bit squares
+
+ __m128i sum1 = _mm_shuffle_epi32(squares, _MM_SHUFFLE(0, 1, 2, 3)); // Move upper two integers to lower
+ __m128i sum2 = _mm_add_epi32(squares, sum1); // Now we can add the (originally) upper two and lower two integers
+ __m128i sum3 = _mm_shuffle_epi32(sum2, _MM_SHUFFLE(1, 1, 1, 1)); // Move the second-lowest integer to lowest position
+ __m128i sum4 = _mm_add_epi32(sum2, sum3); // Add the two lowest positions
+ autocorrSum += _mm_cvtsi128_si32(sum4);
+ }
+ }
+ return {note % HISTORY_BINS, autocorrSum};
+}
+
+#endif
+
+static inline AutotuneHistogramEntry CalculateNoteHistogram(int note, AutotuneContext ctx)
+{
+ const SmpLength autocorrShift = NoteToShift(ctx.sampleFreq, note, ctx.pitchReference);
+ uint64 autocorrSum = 0;
+ {
+ const int16 *normalData = ctx.m_sampleData;
+ const int16 *shiftedData = ctx.m_sampleData + autocorrShift;
+ // Add up squared differences of all values
+ for(SmpLength i = ctx.processLength; i != 0; i--, normalData++, shiftedData++)
+ {
+ autocorrSum += (*normalData - *shiftedData) * (*normalData - *shiftedData);
+ }
+ }
+ return {note % HISTORY_BINS, autocorrSum};
+}
+
+
+static inline AutotuneHistogram operator+(AutotuneHistogram a, AutotuneHistogram b) noexcept
+{
+ AutotuneHistogram result;
+ for(std::size_t i = 0; i < HISTORY_BINS; ++i)
+ {
+ result.histogram[i] = a.histogram[i] + b.histogram[i];
+ }
+ return result;
+}
+
+
+static inline AutotuneHistogram & operator+=(AutotuneHistogram &a, AutotuneHistogram b) noexcept
+{
+ for(std::size_t i = 0; i < HISTORY_BINS; ++i)
+ {
+ a.histogram[i] += b.histogram[i];
+ }
+ return a;
+}
+
+
+static inline AutotuneHistogram &operator+=(AutotuneHistogram &a, AutotuneHistogramEntry b) noexcept
+{
+ a.histogram[b.index] += b.sum;
+ return a;
+}
+
+
+struct AutotuneHistogramReduce
+{
+ inline AutotuneHistogram operator()(AutotuneHistogram a, AutotuneHistogram b) noexcept
+ {
+ return a + b;
+ }
+ inline AutotuneHistogram operator()(AutotuneHistogramEntry a, AutotuneHistogramEntry b) noexcept
+ {
+ AutotuneHistogram result;
+ result += a;
+ result += b;
+ return result;
+ }
+ inline AutotuneHistogram operator()(AutotuneHistogramEntry a, AutotuneHistogram b) noexcept
+ {
+ b += a;
+ return b;
+ }
+ inline AutotuneHistogram operator()(AutotuneHistogram a, AutotuneHistogramEntry b) noexcept
+ {
+ a += b;
+ return a;
+ }
+};
+
+
+} // local
+
+
+
+bool Autotune::Apply(double pitchReference, int targetNote)
+{
+ if(!CanApply())
+ {
+ return false;
+ }
+
+ const uint32 sampleFreq = m_sample.GetSampleRate(m_modType);
+ // At the lowest frequency, we get the highest autocorrelation shift amount.
+ const SmpLength maxShift = NoteToShift(sampleFreq, START_NOTE, pitchReference);
+ if(!PrepareSample(maxShift))
+ {
+ return false;
+ }
+ // We don't process the autocorrelation overhead.
+ const SmpLength processLength = m_sampleLength - maxShift;
+
+ AutotuneContext ctx;
+ ctx.m_sampleData = m_sampleData;
+ ctx.pitchReference = pitchReference;
+ ctx.processLength = processLength;
+ ctx.sampleFreq = sampleFreq;
+
+ // Note that we cannot use a fake integer iterator here because of the requirement on ForwardIterator to return a reference to the elements.
+ std::array<int, END_NOTE - START_NOTE> notes;
+ std::iota(notes.begin(), notes.end(), START_NOTE);
+
+ AutotuneHistogram autocorr =
+#if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2)
+ (CPU::HasFeatureSet(CPU::feature::sse2)) ? std::transform_reduce(std::execution::par_unseq, std::begin(notes), std::end(notes), AutotuneHistogram{}, AutotuneHistogramReduce{}, [ctx](int note) { return CalculateNoteHistogramSSE2(note, ctx); } ) :
+#endif
+ std::transform_reduce(std::execution::par_unseq, std::begin(notes), std::end(notes), AutotuneHistogram{}, AutotuneHistogramReduce{}, [ctx](int note) { return CalculateNoteHistogram(note, ctx); } );
+
+ // Interpolate the histogram...
+ AutotuneHistogram interpolated;
+ for(int i = 0; i < HISTORY_BINS; i++)
+ {
+ interpolated.histogram[i] = autocorr.histogram[i];
+ const int kernelWidth = 4;
+ for(int ki = kernelWidth; ki >= 0; ki--)
+ {
+ // Choose bins to interpolate with
+ int left = i - ki;
+ if(left < 0) left += HISTORY_BINS;
+ int right = i + ki;
+ if(right >= HISTORY_BINS) right -= HISTORY_BINS;
+
+ interpolated.histogram[i] = interpolated.histogram[i] / 2 + (autocorr.histogram[left] + autocorr.histogram[right]) / 2;
+ }
+ }
+
+ // ...and find global minimum
+ int minimumBin = static_cast<int>(std::min_element(std::begin(interpolated.histogram), std::end(interpolated.histogram)) - std::begin(interpolated.histogram));
+
+ // Center target notes around C
+ if(targetNote >= 6)
+ {
+ targetNote -= 12;
+ }
+
+ // Center bins around target note
+ minimumBin -= targetNote * BINS_PER_NOTE;
+ if(minimumBin >= 6 * BINS_PER_NOTE)
+ {
+ minimumBin -= 12 * BINS_PER_NOTE;
+ }
+ minimumBin += targetNote * BINS_PER_NOTE;
+
+ const double newFundamentalFreq = NoteToFrequency(static_cast<double>(69 - targetNote) + static_cast<double>(minimumBin) / BINS_PER_NOTE, pitchReference);
+
+ if(const auto newFreq = mpt::saturate_round<uint32>(sampleFreq * pitchReference / newFundamentalFreq); newFreq != sampleFreq)
+ m_sample.nC5Speed = newFreq;
+ else
+ return false;
+
+ if((m_modType & (MOD_TYPE_XM | MOD_TYPE_MOD)))
+ {
+ m_sample.FrequencyToTranspose();
+ if((m_modType & MOD_TYPE_MOD))
+ {
+ m_sample.RelativeTone = 0;
+ }
+ }
+
+ return true;
+}
+
+
+/////////////////////////////////////////////////////////////
+// CAutotuneDlg
+
+int CAutotuneDlg::m_pitchReference = 440; // Pitch reference in Hz
+int CAutotuneDlg::m_targetNote = 0; // Target note (C- = 0, C# = 1, etc...)
+
+void CAutotuneDlg::DoDataExchange(CDataExchange* pDX)
+{
+ CDialog::DoDataExchange(pDX);
+ //{{AFX_DATA_MAP(CAutotuneDlg)
+ DDX_Control(pDX, IDC_COMBO1, m_CbnNoteBox);
+ //}}AFX_DATA_MAP
+}
+
+
+BOOL CAutotuneDlg::OnInitDialog()
+{
+ CDialog::OnInitDialog();
+
+ m_CbnNoteBox.ResetContent();
+ for(int note = 0; note < 12; note++)
+ {
+ const int item = m_CbnNoteBox.AddString(mpt::ToCString(CSoundFile::GetDefaultNoteName(note)));
+ m_CbnNoteBox.SetItemData(item, note);
+ if(note == m_targetNote)
+ {
+ m_CbnNoteBox.SetCurSel(item);
+ }
+ }
+
+ SetDlgItemInt(IDC_EDIT1, m_pitchReference, FALSE);
+
+ return TRUE;
+}
+
+
+void CAutotuneDlg::OnOK()
+{
+ int pitch = GetDlgItemInt(IDC_EDIT1);
+ if(pitch <= 0)
+ {
+ MessageBeep(MB_ICONWARNING);
+ return;
+ }
+
+ CDialog::OnOK();
+ m_targetNote = (int)m_CbnNoteBox.GetItemData(m_CbnNoteBox.GetCurSel());
+ m_pitchReference = pitch;
+}
+
+OPENMPT_NAMESPACE_END