aboutsummaryrefslogtreecommitdiff
path: root/Src/external_dependencies/openmpt-trunk/soundlib/Sndmix.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Src/external_dependencies/openmpt-trunk/soundlib/Sndmix.cpp')
-rw-r--r--Src/external_dependencies/openmpt-trunk/soundlib/Sndmix.cpp2752
1 files changed, 2752 insertions, 0 deletions
diff --git a/Src/external_dependencies/openmpt-trunk/soundlib/Sndmix.cpp b/Src/external_dependencies/openmpt-trunk/soundlib/Sndmix.cpp
new file mode 100644
index 00000000..f66586e4
--- /dev/null
+++ b/Src/external_dependencies/openmpt-trunk/soundlib/Sndmix.cpp
@@ -0,0 +1,2752 @@
+/*
+ * Sndmix.cpp
+ * -----------
+ * Purpose: Pattern playback, effect processing
+ * Notes : (currently none)
+ * Authors: Olivier Lapicque
+ * OpenMPT Devs
+ * The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
+ */
+
+
+#include "stdafx.h"
+
+#include "Sndfile.h"
+#include "MixerLoops.h"
+#include "MIDIEvents.h"
+#include "Tables.h"
+#ifdef MODPLUG_TRACKER
+#include "../mptrack/TrackerSettings.h"
+#endif // MODPLUG_TRACKER
+#ifndef NO_PLUGINS
+#include "plugins/PlugInterface.h"
+#endif // NO_PLUGINS
+#include "OPL.h"
+
+OPENMPT_NAMESPACE_BEGIN
+
+// Log tables for pre-amp
+// Pre-amp (or more precisely: Pre-attenuation) depends on the number of channels,
+// Which this table takes care of.
+static constexpr uint8 PreAmpTable[16] =
+{
+ 0x60, 0x60, 0x60, 0x70, // 0-7
+ 0x80, 0x88, 0x90, 0x98, // 8-15
+ 0xA0, 0xA4, 0xA8, 0xAC, // 16-23
+ 0xB0, 0xB4, 0xB8, 0xBC, // 24-31
+};
+
+#ifndef NO_AGC
+static constexpr uint8 PreAmpAGCTable[16] =
+{
+ 0x60, 0x60, 0x60, 0x64,
+ 0x68, 0x70, 0x78, 0x80,
+ 0x84, 0x88, 0x8C, 0x90,
+ 0x92, 0x94, 0x96, 0x98,
+};
+#endif
+
+
+void CSoundFile::SetMixerSettings(const MixerSettings &mixersettings)
+{
+ SetPreAmp(mixersettings.m_nPreAmp); // adjust agc
+ bool reset = false;
+ if(
+ (mixersettings.gdwMixingFreq != m_MixerSettings.gdwMixingFreq)
+ ||
+ (mixersettings.gnChannels != m_MixerSettings.gnChannels)
+ ||
+ (mixersettings.MixerFlags != m_MixerSettings.MixerFlags))
+ reset = true;
+ m_MixerSettings = mixersettings;
+ InitPlayer(reset);
+}
+
+
+void CSoundFile::SetResamplerSettings(const CResamplerSettings &resamplersettings)
+{
+ m_Resampler.m_Settings = resamplersettings;
+ m_Resampler.UpdateTables();
+ InitAmigaResampler();
+}
+
+
+void CSoundFile::InitPlayer(bool bReset)
+{
+ if(bReset)
+ {
+ ResetMixStat();
+ m_dryLOfsVol = m_dryROfsVol = 0;
+ m_surroundLOfsVol = m_surroundROfsVol = 0;
+ InitAmigaResampler();
+ }
+ m_Resampler.UpdateTables();
+#ifndef NO_REVERB
+ m_Reverb.Initialize(bReset, m_RvbROfsVol, m_RvbLOfsVol, m_MixerSettings.gdwMixingFreq);
+#endif
+#ifndef NO_DSP
+ m_Surround.Initialize(bReset, m_MixerSettings.gdwMixingFreq);
+#endif
+#ifndef NO_DSP
+ m_MegaBass.Initialize(bReset, m_MixerSettings.gdwMixingFreq);
+#endif
+#ifndef NO_EQ
+ m_EQ.Initialize(bReset, m_MixerSettings.gdwMixingFreq);
+#endif
+#ifndef NO_AGC
+ m_AGC.Initialize(bReset, m_MixerSettings.gdwMixingFreq);
+#endif
+#ifndef NO_DSP
+ m_BitCrush.Initialize(bReset, m_MixerSettings.gdwMixingFreq);
+#endif
+ if(m_opl)
+ {
+ m_opl->Initialize(m_MixerSettings.gdwMixingFreq);
+ }
+}
+
+
+bool CSoundFile::FadeSong(uint32 msec)
+{
+ samplecount_t nsamples = Util::muldiv(msec, m_MixerSettings.gdwMixingFreq, 1000);
+ if (nsamples <= 0) return false;
+ if (nsamples > 0x100000) nsamples = 0x100000;
+ m_PlayState.m_nBufferCount = nsamples;
+ int32 nRampLength = static_cast<int32>(m_PlayState.m_nBufferCount);
+ // Ramp everything down
+ for (uint32 noff=0; noff < m_nMixChannels; noff++)
+ {
+ ModChannel &pramp = m_PlayState.Chn[m_PlayState.ChnMix[noff]];
+ pramp.newRightVol = pramp.newLeftVol = 0;
+ pramp.leftRamp = -pramp.leftVol * (1 << VOLUMERAMPPRECISION) / nRampLength;
+ pramp.rightRamp = -pramp.rightVol * (1 << VOLUMERAMPPRECISION) / nRampLength;
+ pramp.rampLeftVol = pramp.leftVol * (1 << VOLUMERAMPPRECISION);
+ pramp.rampRightVol = pramp.rightVol * (1 << VOLUMERAMPPRECISION);
+ pramp.nRampLength = nRampLength;
+ pramp.dwFlags.set(CHN_VOLUMERAMP);
+ }
+ return true;
+}
+
+
+// Apply stereo separation factor on an interleaved stereo/quad stream.
+// count = Number of stereo sample pairs to process
+// separation = -256...256 (negative values = swap L/R, 0 = mono, 128 = normal)
+static void ApplyStereoSeparation(mixsample_t *mixBuf, std::size_t count, int32 separation)
+{
+#ifdef MPT_INTMIXER
+ const mixsample_t factor_num = separation; // 128 =^= 1.0f
+ const mixsample_t factor_den = MixerSettings::StereoSeparationScale; // 128
+ const mixsample_t normalize_den = 2; // mid/side pre/post normalization
+ const mixsample_t mid_den = normalize_den;
+ const mixsample_t side_num = factor_num;
+ const mixsample_t side_den = factor_den * normalize_den;
+#else
+ const float normalize_factor = 0.5f; // cumulative mid/side normalization factor (1/sqrt(2))*(1/sqrt(2))
+ const float factor = static_cast<float>(separation) / static_cast<float>(MixerSettings::StereoSeparationScale); // sep / 128
+ const float mid_factor = normalize_factor;
+ const float side_factor = factor * normalize_factor;
+#endif
+ for(std::size_t i = 0; i < count; i++)
+ {
+ mixsample_t l = mixBuf[0];
+ mixsample_t r = mixBuf[1];
+ mixsample_t m = l + r;
+ mixsample_t s = l - r;
+#ifdef MPT_INTMIXER
+ m /= mid_den;
+ s = Util::muldiv(s, side_num, side_den);
+#else
+ m *= mid_factor;
+ s *= side_factor;
+#endif
+ l = m + s;
+ r = m - s;
+ mixBuf[0] = l;
+ mixBuf[1] = r;
+ mixBuf += 2;
+ }
+}
+
+
+static void ApplyStereoSeparation(mixsample_t *SoundFrontBuffer, mixsample_t *SoundRearBuffer, std::size_t channels, std::size_t countChunk, int32 separation)
+{
+ if(separation == MixerSettings::StereoSeparationScale)
+ { // identity
+ return;
+ }
+ if(channels >= 2) ApplyStereoSeparation(SoundFrontBuffer, countChunk, separation);
+ if(channels >= 4) ApplyStereoSeparation(SoundRearBuffer , countChunk, separation);
+}
+
+
+void CSoundFile::ProcessInputChannels(IAudioSource &source, std::size_t countChunk)
+{
+ for(std::size_t channel = 0; channel < NUMMIXINPUTBUFFERS; ++channel)
+ {
+ std::fill(&(MixInputBuffer[channel][0]), &(MixInputBuffer[channel][countChunk]), 0);
+ }
+ mixsample_t * buffers[NUMMIXINPUTBUFFERS];
+ for(std::size_t channel = 0; channel < NUMMIXINPUTBUFFERS; ++channel)
+ {
+ buffers[channel] = MixInputBuffer[channel];
+ }
+ source.Process(mpt::audio_span_planar(buffers, m_MixerSettings.NumInputChannels, countChunk));
+}
+
+
+// Read one tick but skip all expensive rendering options
+CSoundFile::samplecount_t CSoundFile::ReadOneTick()
+{
+ const auto origMaxMixChannels = m_MixerSettings.m_nMaxMixChannels;
+ m_MixerSettings.m_nMaxMixChannels = 0;
+ while(m_PlayState.m_nBufferCount)
+ {
+ auto framesToRender = std::min(m_PlayState.m_nBufferCount, samplecount_t(MIXBUFFERSIZE));
+ CreateStereoMix(framesToRender);
+ m_PlayState.m_nBufferCount -= framesToRender;
+ m_PlayState.m_lTotalSampleCount += framesToRender;
+ }
+ m_MixerSettings.m_nMaxMixChannels = origMaxMixChannels;
+ if(ReadNote())
+ return m_PlayState.m_nBufferCount;
+ else
+ return 0;
+}
+
+
+CSoundFile::samplecount_t CSoundFile::Read(samplecount_t count, IAudioTarget &target, IAudioSource &source, std::optional<std::reference_wrapper<IMonitorOutput>> outputMonitor, std::optional<std::reference_wrapper<IMonitorInput>> inputMonitor)
+{
+ MPT_ASSERT_ALWAYS(m_MixerSettings.IsValid());
+
+ samplecount_t countRendered = 0;
+ samplecount_t countToRender = count;
+
+ while(!m_SongFlags[SONG_ENDREACHED] && countToRender > 0)
+ {
+
+ // Update Channel Data
+ if(!m_PlayState.m_nBufferCount)
+ {
+ // Last tick or fade completely processed, find out what to do next
+
+ if(m_SongFlags[SONG_FADINGSONG])
+ {
+ // Song was faded out
+ m_SongFlags.set(SONG_ENDREACHED);
+ } else if(ReadNote())
+ {
+ // Render next tick (normal progress)
+ MPT_ASSERT(m_PlayState.m_nBufferCount > 0);
+ #ifdef MODPLUG_TRACKER
+ // Save pattern cue points for WAV rendering here (if we reached a new pattern, that is.)
+ if(m_PatternCuePoints != nullptr && (m_PatternCuePoints->empty() || m_PlayState.m_nCurrentOrder != m_PatternCuePoints->back().order))
+ {
+ PatternCuePoint cue;
+ cue.offset = countRendered;
+ cue.order = m_PlayState.m_nCurrentOrder;
+ cue.processed = false; // We don't know the base offset in the file here. It has to be added in the main conversion loop.
+ m_PatternCuePoints->push_back(cue);
+ }
+ #endif
+ } else
+ {
+ // No new pattern data
+ #ifdef MODPLUG_TRACKER
+ if((m_nMaxOrderPosition) && (m_PlayState.m_nCurrentOrder >= m_nMaxOrderPosition))
+ {
+ m_SongFlags.set(SONG_ENDREACHED);
+ }
+ #endif // MODPLUG_TRACKER
+ if(IsRenderingToDisc())
+ {
+ // Disable song fade when rendering or when requested in libopenmpt.
+ m_SongFlags.set(SONG_ENDREACHED);
+ } else
+ { // end of song reached, fade it out
+ if(FadeSong(FADESONGDELAY)) // sets m_nBufferCount xor returns false
+ { // FadeSong sets m_nBufferCount here
+ MPT_ASSERT(m_PlayState.m_nBufferCount > 0);
+ m_SongFlags.set(SONG_FADINGSONG);
+ } else
+ {
+ m_SongFlags.set(SONG_ENDREACHED);
+ }
+ }
+ }
+
+ }
+
+ if(m_SongFlags[SONG_ENDREACHED])
+ {
+ // Mix done.
+
+ // If we decide to continue the mix (possible in libopenmpt), the tick count
+ // is valid right now (0), meaning that no new row data will be processed.
+ // This would effectively prolong the last played row.
+ m_PlayState.m_nTickCount = m_PlayState.TicksOnRow();
+ break;
+ }
+
+ MPT_ASSERT(m_PlayState.m_nBufferCount > 0); // assert that we have actually something to do
+
+ const samplecount_t countChunk = std::min({ static_cast<samplecount_t>(MIXBUFFERSIZE), static_cast<samplecount_t>(m_PlayState.m_nBufferCount), static_cast<samplecount_t>(countToRender) });
+
+ if(m_MixerSettings.NumInputChannels > 0)
+ {
+ ProcessInputChannels(source, countChunk);
+ }
+
+ if(inputMonitor)
+ {
+ mixsample_t *buffers[NUMMIXINPUTBUFFERS];
+ for(std::size_t channel = 0; channel < NUMMIXINPUTBUFFERS; ++channel)
+ {
+ buffers[channel] = MixInputBuffer[channel];
+ }
+ inputMonitor->get().Process(mpt::audio_span_planar<const mixsample_t>(buffers, m_MixerSettings.NumInputChannels, countChunk));
+ }
+
+ CreateStereoMix(countChunk);
+
+ if(m_opl)
+ {
+ m_opl->Mix(MixSoundBuffer, countChunk, m_OPLVolumeFactor * m_nVSTiVolume / 48);
+ }
+
+#ifndef NO_REVERB
+ m_Reverb.Process(MixSoundBuffer, ReverbSendBuffer, m_RvbROfsVol, m_RvbLOfsVol, countChunk);
+#endif // NO_REVERB
+
+#ifndef NO_PLUGINS
+ if(m_loadedPlugins)
+ {
+ ProcessPlugins(countChunk);
+ }
+#endif // NO_PLUGINS
+
+ if(m_MixerSettings.gnChannels == 1)
+ {
+ MonoFromStereo(MixSoundBuffer, countChunk);
+ }
+
+ if(m_PlayConfig.getGlobalVolumeAppliesToMaster())
+ {
+ ProcessGlobalVolume(countChunk);
+ }
+
+ if(m_MixerSettings.m_nStereoSeparation != MixerSettings::StereoSeparationScale)
+ {
+ ProcessStereoSeparation(countChunk);
+ }
+
+ if(m_MixerSettings.DSPMask)
+ {
+ ProcessDSP(countChunk);
+ }
+
+ if(m_MixerSettings.gnChannels == 4)
+ {
+ InterleaveFrontRear(MixSoundBuffer, MixRearBuffer, countChunk);
+ }
+
+ if(outputMonitor)
+ {
+ outputMonitor->get().Process(mpt::audio_span_interleaved<const mixsample_t>(MixSoundBuffer, m_MixerSettings.gnChannels, countChunk));
+ }
+
+ target.Process(mpt::audio_span_interleaved<mixsample_t>(MixSoundBuffer, m_MixerSettings.gnChannels, countChunk));
+
+ // Buffer ready
+ countRendered += countChunk;
+ countToRender -= countChunk;
+ m_PlayState.m_nBufferCount -= countChunk;
+ m_PlayState.m_lTotalSampleCount += countChunk;
+
+#ifdef MODPLUG_TRACKER
+ if(IsRenderingToDisc())
+ {
+ // Stop playback on F00 if no more voices are active.
+ // F00 sets the tick count to 65536 in FT2, so it just generates a reaaaally long row.
+ // Usually this command can be found at the end of a song to effectively stop playback.
+ // Since we don't want to render hours of silence, we are going to check if there are
+ // still any channels playing, and if that is no longer the case, we stop playback at
+ // the end of the next tick.
+ if(m_PlayState.m_nMusicSpeed == uint16_max && (m_nMixStat == 0 || m_PlayState.m_nGlobalVolume == 0) && GetType() == MOD_TYPE_XM && !m_PlayState.m_nBufferCount)
+ {
+ m_SongFlags.set(SONG_ENDREACHED);
+ }
+ }
+#endif // MODPLUG_TRACKER
+ }
+
+ // mix done
+
+ return countRendered;
+
+}
+
+
+void CSoundFile::ProcessDSP(uint32 countChunk)
+{
+ #ifndef NO_DSP
+ if(m_MixerSettings.DSPMask & SNDDSP_SURROUND)
+ {
+ m_Surround.Process(MixSoundBuffer, MixRearBuffer, countChunk, m_MixerSettings.gnChannels);
+ }
+ #endif // NO_DSP
+
+ #ifndef NO_DSP
+ if(m_MixerSettings.DSPMask & SNDDSP_MEGABASS)
+ {
+ m_MegaBass.Process(MixSoundBuffer, MixRearBuffer, countChunk, m_MixerSettings.gnChannels);
+ }
+ #endif // NO_DSP
+
+ #ifndef NO_EQ
+ if(m_MixerSettings.DSPMask & SNDDSP_EQ)
+ {
+ m_EQ.Process(MixSoundBuffer, MixRearBuffer, countChunk, m_MixerSettings.gnChannels);
+ }
+ #endif // NO_EQ
+
+ #ifndef NO_AGC
+ if(m_MixerSettings.DSPMask & SNDDSP_AGC)
+ {
+ m_AGC.Process(MixSoundBuffer, MixRearBuffer, countChunk, m_MixerSettings.gnChannels);
+ }
+ #endif // NO_AGC
+
+ #ifndef NO_DSP
+ if(m_MixerSettings.DSPMask & SNDDSP_BITCRUSH)
+ {
+ m_BitCrush.Process(MixSoundBuffer, MixRearBuffer, countChunk, m_MixerSettings.gnChannels);
+ }
+ #endif // NO_DSP
+
+ #if defined(NO_DSP) && defined(NO_EQ) && defined(NO_AGC)
+ MPT_UNREFERENCED_PARAMETER(countChunk);
+ #endif
+}
+
+
+/////////////////////////////////////////////////////////////////////////////
+// Handles navigation/effects
+
+bool CSoundFile::ProcessRow()
+{
+ while(++m_PlayState.m_nTickCount >= m_PlayState.TicksOnRow())
+ {
+ const auto [ignoreRow, patternTransition] = NextRow(m_PlayState, m_SongFlags[SONG_BREAKTOROW]);
+
+#ifdef MODPLUG_TRACKER
+ if(patternTransition)
+ {
+ HandlePatternTransitionEvents();
+ }
+ // "Lock row" editing feature
+ if(m_lockRowStart != ROWINDEX_INVALID && (m_PlayState.m_nRow < m_lockRowStart || m_PlayState.m_nRow > m_lockRowEnd) && !IsRenderingToDisc())
+ {
+ m_PlayState.m_nRow = m_lockRowStart;
+ }
+ // "Lock order" editing feature
+ if(Order().IsPositionLocked(m_PlayState.m_nCurrentOrder) && !IsRenderingToDisc())
+ {
+ m_PlayState.m_nCurrentOrder = m_lockOrderStart;
+ }
+#else
+ MPT_UNUSED_VARIABLE(patternTransition);
+#endif // MODPLUG_TRACKER
+
+ // Check if pattern is valid
+ if(!m_SongFlags[SONG_PATTERNLOOP])
+ {
+ m_PlayState.m_nPattern = (m_PlayState.m_nCurrentOrder < Order().size()) ? Order()[m_PlayState.m_nCurrentOrder] : Order.GetInvalidPatIndex();
+ if (m_PlayState.m_nPattern < Patterns.Size() && !Patterns[m_PlayState.m_nPattern].IsValid()) m_PlayState.m_nPattern = Order.GetIgnoreIndex();
+ while (m_PlayState.m_nPattern >= Patterns.Size())
+ {
+ // End of song?
+ if ((m_PlayState.m_nPattern == Order.GetInvalidPatIndex()) || (m_PlayState.m_nCurrentOrder >= Order().size()))
+ {
+ ORDERINDEX restartPosOverride = Order().GetRestartPos();
+ if(restartPosOverride == 0 && m_PlayState.m_nCurrentOrder <= Order().size() && m_PlayState.m_nCurrentOrder > 0)
+ {
+ // Subtune detection. Subtunes are separated by "---" order items, so if we're in a
+ // subtune and there's no restart position, we go to the first order of the subtune
+ // (i.e. the first order after the previous "---" item)
+ for(ORDERINDEX ord = m_PlayState.m_nCurrentOrder - 1; ord > 0; ord--)
+ {
+ if(Order()[ord] == Order.GetInvalidPatIndex())
+ {
+ // Jump back to first order of this subtune
+ restartPosOverride = ord + 1;
+ break;
+ }
+ }
+ }
+
+ // If channel resetting is disabled in MPT, we will emulate a pattern break (and we always do it if we're not in MPT)
+#ifdef MODPLUG_TRACKER
+ if(!(TrackerSettings::Instance().m_dwPatternSetup & PATTERN_RESETCHANNELS))
+#endif // MODPLUG_TRACKER
+ {
+ m_SongFlags.set(SONG_BREAKTOROW);
+ }
+
+ if (restartPosOverride == 0 && !m_SongFlags[SONG_BREAKTOROW])
+ {
+ //rewbs.instroVSTi: stop all VSTi at end of song, if looping.
+ StopAllVsti();
+ m_PlayState.m_nMusicSpeed = m_nDefaultSpeed;
+ m_PlayState.m_nMusicTempo = m_nDefaultTempo;
+ m_PlayState.m_nGlobalVolume = m_nDefaultGlobalVolume;
+ for(CHANNELINDEX i = 0; i < MAX_CHANNELS; i++)
+ {
+ auto &chn = m_PlayState.Chn[i];
+ if(chn.dwFlags[CHN_ADLIB] && m_opl)
+ {
+ m_opl->NoteCut(i);
+ }
+ chn.dwFlags.set(CHN_NOTEFADE | CHN_KEYOFF);
+ chn.nFadeOutVol = 0;
+
+ if(i < m_nChannels)
+ {
+ chn.nGlobalVol = ChnSettings[i].nVolume;
+ chn.nVolume = ChnSettings[i].nVolume;
+ chn.nPan = ChnSettings[i].nPan;
+ chn.nPanSwing = chn.nVolSwing = 0;
+ chn.nCutSwing = chn.nResSwing = 0;
+ chn.nOldVolParam = 0;
+ chn.oldOffset = 0;
+ chn.nOldHiOffset = 0;
+ chn.nPortamentoDest = 0;
+
+ if(!chn.nLength)
+ {
+ chn.dwFlags = ChnSettings[i].dwFlags;
+ chn.nLoopStart = 0;
+ chn.nLoopEnd = 0;
+ chn.pModInstrument = nullptr;
+ chn.pModSample = nullptr;
+ }
+ }
+ }
+ }
+
+ //Handle Repeat position
+ m_PlayState.m_nCurrentOrder = restartPosOverride;
+ m_SongFlags.reset(SONG_BREAKTOROW);
+ //If restart pos points to +++, move along
+ while(m_PlayState.m_nCurrentOrder < Order().size() && Order()[m_PlayState.m_nCurrentOrder] == Order.GetIgnoreIndex())
+ {
+ m_PlayState.m_nCurrentOrder++;
+ }
+ //Check for end of song or bad pattern
+ if (m_PlayState.m_nCurrentOrder >= Order().size()
+ || !Order().IsValidPat(m_PlayState.m_nCurrentOrder))
+ {
+ m_visitedRows.Initialize(true);
+ return false;
+ }
+ } else
+ {
+ m_PlayState.m_nCurrentOrder++;
+ }
+
+ if (m_PlayState.m_nCurrentOrder < Order().size())
+ m_PlayState.m_nPattern = Order()[m_PlayState.m_nCurrentOrder];
+ else
+ m_PlayState.m_nPattern = Order.GetInvalidPatIndex();
+
+ if (m_PlayState.m_nPattern < Patterns.Size() && !Patterns[m_PlayState.m_nPattern].IsValid())
+ m_PlayState.m_nPattern = Order.GetIgnoreIndex();
+ }
+ m_PlayState.m_nNextOrder = m_PlayState.m_nCurrentOrder;
+
+#ifdef MODPLUG_TRACKER
+ if ((m_nMaxOrderPosition) && (m_PlayState.m_nCurrentOrder >= m_nMaxOrderPosition)) return false;
+#endif // MODPLUG_TRACKER
+ }
+
+ // Weird stuff?
+ if (!Patterns.IsValidPat(m_PlayState.m_nPattern))
+ return false;
+ // Did we jump to an invalid row?
+ if (m_PlayState.m_nRow >= Patterns[m_PlayState.m_nPattern].GetNumRows()) m_PlayState.m_nRow = 0;
+
+ // Has this row been visited before? We might want to stop playback now.
+ // But: We will not mark the row as modified if the song is not in loop mode but
+ // the pattern loop (editor flag, not to be confused with the pattern loop effect)
+ // flag is set - because in that case, the module would stop after the first pattern loop...
+ const bool overrideLoopCheck = (m_nRepeatCount != -1) && m_SongFlags[SONG_PATTERNLOOP];
+ if(!overrideLoopCheck && m_visitedRows.Visit(m_PlayState.m_nCurrentOrder, m_PlayState.m_nRow, m_PlayState.Chn, ignoreRow))
+ {
+ if(m_nRepeatCount)
+ {
+ // repeat count == -1 means repeat infinitely.
+ if(m_nRepeatCount > 0)
+ {
+ m_nRepeatCount--;
+ }
+ // Forget all but the current row.
+ m_visitedRows.Initialize(true);
+ m_visitedRows.Visit(m_PlayState.m_nCurrentOrder, m_PlayState.m_nRow, m_PlayState.Chn, ignoreRow);
+ } else
+ {
+#ifdef MODPLUG_TRACKER
+ // Let's check again if this really is the end of the song.
+ // The visited rows vector might have been screwed up while editing...
+ // This is of course not possible during rendering to WAV, so we ignore that case.
+ bool isReallyAtEnd = IsRenderingToDisc();
+ if(!isReallyAtEnd)
+ {
+ for(const auto &t : GetLength(eNoAdjust, GetLengthTarget(true)))
+ {
+ if(t.lastOrder == m_PlayState.m_nCurrentOrder && t.lastRow == m_PlayState.m_nRow)
+ {
+ isReallyAtEnd = true;
+ break;
+ }
+ }
+ }
+
+ if(isReallyAtEnd)
+ {
+ // This is really the song's end!
+ m_visitedRows.Initialize(true);
+ return false;
+ } else
+ {
+ // Ok, this is really dirty, but we have to update the visited rows vector...
+ GetLength(eAdjustOnlyVisitedRows, GetLengthTarget(m_PlayState.m_nCurrentOrder, m_PlayState.m_nRow));
+ }
+#else
+ if(m_SongFlags[SONG_PLAYALLSONGS])
+ {
+ // When playing all subsongs consecutively, first search for any hidden subsongs...
+ if(!m_visitedRows.GetFirstUnvisitedRow(m_PlayState.m_nCurrentOrder, m_PlayState.m_nRow, true))
+ {
+ // ...and then try the next sequence.
+ m_PlayState.m_nNextOrder = m_PlayState.m_nCurrentOrder = 0;
+ m_PlayState.m_nNextRow = m_PlayState.m_nRow = 0;
+ if(Order.GetCurrentSequenceIndex() >= Order.GetNumSequences() - 1)
+ {
+ Order.SetSequence(0);
+ m_visitedRows.Initialize(true);
+ return false;
+ }
+ Order.SetSequence(Order.GetCurrentSequenceIndex() + 1);
+ m_visitedRows.Initialize(true);
+ }
+ // When jumping to the next subsong, stop all playing notes from the previous song...
+ const auto muteFlag = CSoundFile::GetChannelMuteFlag();
+ for(CHANNELINDEX i = 0; i < MAX_CHANNELS; i++)
+ m_PlayState.Chn[i].Reset(ModChannel::resetSetPosFull, *this, i, muteFlag);
+ StopAllVsti();
+ // ...and the global playback information.
+ m_PlayState.m_nMusicSpeed = m_nDefaultSpeed;
+ m_PlayState.m_nMusicTempo = m_nDefaultTempo;
+ m_PlayState.m_nGlobalVolume = m_nDefaultGlobalVolume;
+
+ m_PlayState.m_nNextOrder = m_PlayState.m_nCurrentOrder;
+ m_PlayState.m_nNextRow = m_PlayState.m_nRow;
+ if(Order().size() > m_PlayState.m_nCurrentOrder)
+ m_PlayState.m_nPattern = Order()[m_PlayState.m_nCurrentOrder];
+ m_visitedRows.Visit(m_PlayState.m_nCurrentOrder, m_PlayState.m_nRow, m_PlayState.Chn, ignoreRow);
+ if (!Patterns.IsValidPat(m_PlayState.m_nPattern))
+ return false;
+ } else
+ {
+ m_visitedRows.Initialize(true);
+ return false;
+ }
+#endif // MODPLUG_TRACKER
+ }
+ }
+
+ SetupNextRow(m_PlayState, m_SongFlags[SONG_PATTERNLOOP]);
+
+ // Reset channel values
+ ModCommand *m = Patterns[m_PlayState.m_nPattern].GetpModCommand(m_PlayState.m_nRow, 0);
+ for (ModChannel *pChn = m_PlayState.Chn, *pEnd = pChn + m_nChannels; pChn != pEnd; pChn++, m++)
+ {
+ // First, handle some quirks that happen after the last tick of the previous row...
+ if(m_playBehaviour[KST3PortaAfterArpeggio]
+ && pChn->nCommand == CMD_ARPEGGIO // Previous row state!
+ && (m->command == CMD_PORTAMENTOUP || m->command == CMD_PORTAMENTODOWN))
+ {
+ // In ST3, a portamento immediately following an arpeggio continues where the arpeggio left off.
+ // Test case: PortaAfterArp.s3m
+ pChn->nPeriod = GetPeriodFromNote(pChn->nArpeggioLastNote, pChn->nFineTune, pChn->nC5Speed);
+ }
+
+ if(m_playBehaviour[kMODOutOfRangeNoteDelay]
+ && !m->IsNote()
+ && pChn->rowCommand.IsNote()
+ && pChn->rowCommand.command == CMD_MODCMDEX && (pChn->rowCommand.param & 0xF0) == 0xD0
+ && (pChn->rowCommand.param & 0x0Fu) >= m_PlayState.m_nMusicSpeed)
+ {
+ // In ProTracker, a note triggered by an out-of-range note delay can be heard on the next row
+ // if there is no new note on that row.
+ // Test case: NoteDelay-NextRow.mod
+ pChn->nPeriod = GetPeriodFromNote(pChn->rowCommand.note, pChn->nFineTune, 0);
+ }
+ if(m_playBehaviour[kMODTempoOnSecondTick] && !m_playBehaviour[kMODVBlankTiming] && m_PlayState.m_nMusicSpeed == 1 && pChn->rowCommand.command == CMD_TEMPO)
+ {
+ // ProTracker sets the tempo after the first tick. This block handles the case of one tick per row.
+ // Test case: TempoChange.mod
+ m_PlayState.m_nMusicTempo = TEMPO(std::max(ModCommand::PARAM(1), pChn->rowCommand.param), 0);
+ }
+
+ pChn->rowCommand = *m;
+
+ pChn->rightVol = pChn->newRightVol;
+ pChn->leftVol = pChn->newLeftVol;
+ pChn->dwFlags.reset(CHN_VIBRATO | CHN_TREMOLO);
+ if(!m_playBehaviour[kITVibratoTremoloPanbrello]) pChn->nPanbrelloOffset = 0;
+ pChn->nCommand = CMD_NONE;
+ pChn->m_plugParamValueStep = 0;
+ }
+
+ // Now that we know which pattern we're on, we can update time signatures (global or pattern-specific)
+ UpdateTimeSignature();
+
+ if(ignoreRow)
+ {
+ m_PlayState.m_nTickCount = m_PlayState.m_nMusicSpeed;
+ continue;
+ }
+ break;
+ }
+ // Should we process tick0 effects?
+ if (!m_PlayState.m_nMusicSpeed) m_PlayState.m_nMusicSpeed = 1;
+
+ //End of row? stop pattern step (aka "play row").
+#ifdef MODPLUG_TRACKER
+ if (m_PlayState.m_nTickCount >= m_PlayState.TicksOnRow() - 1)
+ {
+ if(m_SongFlags[SONG_STEP])
+ {
+ m_SongFlags.reset(SONG_STEP);
+ m_SongFlags.set(SONG_PAUSED);
+ }
+ }
+#endif // MODPLUG_TRACKER
+
+ if (m_PlayState.m_nTickCount)
+ {
+ m_SongFlags.reset(SONG_FIRSTTICK);
+ if(!(GetType() & (MOD_TYPE_XM | MOD_TYPE_MT2))
+ && (GetType() != MOD_TYPE_MOD || m_SongFlags[SONG_PT_MODE]) // Fix infinite loop in "GamerMan " by MrGamer, which was made with FT2
+ && m_PlayState.m_nTickCount < m_PlayState.TicksOnRow())
+ {
+ // Emulate first tick behaviour if Row Delay is set.
+ // Test cases: PatternDelaysRetrig.it, PatternDelaysRetrig.s3m, PatternDelaysRetrig.xm, PatternDelaysRetrig.mod
+ if(!(m_PlayState.m_nTickCount % (m_PlayState.m_nMusicSpeed + m_PlayState.m_nFrameDelay)))
+ {
+ m_SongFlags.set(SONG_FIRSTTICK);
+ }
+ }
+ } else
+ {
+ m_SongFlags.set(SONG_FIRSTTICK);
+ m_SongFlags.reset(SONG_BREAKTOROW);
+ }
+
+ // Update Effects
+ return ProcessEffects();
+}
+
+
+std::pair<bool, bool> CSoundFile::NextRow(PlayState &playState, const bool breakRow) const
+{
+ // When having an EEx effect on the same row as a Dxx jump, the target row is not played in ProTracker.
+ // Test case: DelayBreak.mod (based on condom_corruption by Travolta)
+ const bool ignoreRow = playState.m_nPatternDelay > 1 && breakRow && GetType() == MOD_TYPE_MOD;
+
+ // Done with the last row of the pattern or jumping somewhere else (could also be a result of pattern loop to row 0, but that doesn't matter here)
+ const bool patternTransition = playState.m_nNextRow == 0 || breakRow;
+ if(patternTransition && GetType() == MOD_TYPE_S3M)
+ {
+ // Reset pattern loop start
+ // Test case: LoopReset.s3m
+ for(CHANNELINDEX i = 0; i < GetNumChannels(); i++)
+ {
+ playState.Chn[i].nPatternLoop = 0;
+ }
+ }
+
+ playState.m_nPatternDelay = 0;
+ playState.m_nFrameDelay = 0;
+ playState.m_nTickCount = 0;
+ playState.m_nRow = playState.m_nNextRow;
+ playState.m_nCurrentOrder = playState.m_nNextOrder;
+
+ return {ignoreRow, patternTransition};
+}
+
+
+void CSoundFile::SetupNextRow(PlayState &playState, const bool patternLoop) const
+{
+ playState.m_nNextRow = playState.m_nRow + 1;
+ if(playState.m_nNextRow >= Patterns[playState.m_nPattern].GetNumRows())
+ {
+ if(!patternLoop)
+ playState.m_nNextOrder = playState.m_nCurrentOrder + 1;
+ playState.m_nNextRow = 0;
+
+ // FT2 idiosyncrasy: When E60 is used on a pattern row x, the following pattern also starts from row x
+ // instead of the beginning of the pattern, unless there was a Bxx or Dxx effect.
+ if(m_playBehaviour[kFT2LoopE60Restart])
+ {
+ playState.m_nNextRow = playState.m_nextPatStartRow;
+ playState.m_nextPatStartRow = 0;
+ }
+ }
+}
+
+
+////////////////////////////////////////////////////////////////////////////////////////////
+// Channel effect processing
+
+
+// Calculate delta for Vibrato / Tremolo / Panbrello effect
+int CSoundFile::GetVibratoDelta(int type, int position) const
+{
+ // IT compatibility: IT has its own, more precise tables
+ if(m_playBehaviour[kITVibratoTremoloPanbrello])
+ {
+ position &= 0xFF;
+ switch(type & 0x03)
+ {
+ case 0: // Sine
+ default:
+ return ITSinusTable[position];
+ case 1: // Ramp down
+ return 64 - (position + 1) / 2;
+ case 2: // Square
+ return position < 128 ? 64 : 0;
+ case 3: // Random
+ return mpt::random<int, 7>(AccessPRNG()) - 0x40;
+ }
+ } else if(GetType() & (MOD_TYPE_DIGI | MOD_TYPE_DBM))
+ {
+ // Other waveforms are not supported.
+ static constexpr int8 DBMSinus[] =
+ {
+ 33, 52, 69, 84, 96, 107, 116, 122, 125, 127, 125, 122, 116, 107, 96, 84,
+ 69, 52, 33, 13, -8, -31, -54, -79, -104,-128, -104, -79, -54, -31, -8, 13,
+ };
+ return DBMSinus[(position / 2u) & 0x1F];
+ } else
+ {
+ position &= 0x3F;
+ switch(type & 0x03)
+ {
+ case 0: // Sine
+ default:
+ return ModSinusTable[position];
+ case 1: // Ramp down
+ return (position < 32 ? 0 : 255) - position * 4;
+ case 2: // Square
+ return position < 32 ? 127 : -127;
+ case 3: // Random
+ return ModRandomTable[position];
+ }
+ }
+}
+
+
+void CSoundFile::ProcessVolumeSwing(ModChannel &chn, int &vol) const
+{
+ if(m_playBehaviour[kITSwingBehaviour])
+ {
+ vol += chn.nVolSwing;
+ Limit(vol, 0, 64);
+ } else if(m_playBehaviour[kMPTOldSwingBehaviour])
+ {
+ vol += chn.nVolSwing;
+ Limit(vol, 0, 256);
+ } else
+ {
+ chn.nVolume += chn.nVolSwing;
+ Limit(chn.nVolume, 0, 256);
+ vol = chn.nVolume;
+ chn.nVolSwing = 0;
+ }
+}
+
+
+void CSoundFile::ProcessPanningSwing(ModChannel &chn) const
+{
+ if(m_playBehaviour[kITSwingBehaviour] || m_playBehaviour[kMPTOldSwingBehaviour])
+ {
+ chn.nRealPan = chn.nPan + chn.nPanSwing;
+ Limit(chn.nRealPan, 0, 256);
+ } else
+ {
+ chn.nPan += chn.nPanSwing;
+ Limit(chn.nPan, 0, 256);
+ chn.nPanSwing = 0;
+ chn.nRealPan = chn.nPan;
+ }
+}
+
+
+void CSoundFile::ProcessTremolo(ModChannel &chn, int &vol) const
+{
+ if (chn.dwFlags[CHN_TREMOLO])
+ {
+ if(m_SongFlags.test_all(SONG_FIRSTTICK | SONG_PT_MODE))
+ {
+ // ProTracker doesn't apply tremolo nor advance on the first tick.
+ // Test case: VibratoReset.mod
+ return;
+ }
+
+ // IT compatibility: Why would you not want to execute tremolo at volume 0?
+ if(vol > 0 || m_playBehaviour[kITVibratoTremoloPanbrello])
+ {
+ // IT compatibility: We don't need a different attenuation here because of the different tables we're going to use
+ const uint8 attenuation = ((GetType() & (MOD_TYPE_XM | MOD_TYPE_MOD)) || m_playBehaviour[kITVibratoTremoloPanbrello]) ? 5 : 6;
+
+ int delta = GetVibratoDelta(chn.nTremoloType, chn.nTremoloPos);
+ if((chn.nTremoloType & 0x03) == 1 && m_playBehaviour[kFT2MODTremoloRampWaveform])
+ {
+ // FT2 compatibility: Tremolo ramp down / triangle implementation is weird and affected by vibrato position (copypaste bug)
+ // Test case: TremoloWaveforms.xm, TremoloVibrato.xm
+ uint8 ramp = (chn.nTremoloPos * 4u) & 0x7F;
+ // Volume-colum vibrato gets executed first in FT2, so we may need to advance the vibrato position first
+ uint32 vibPos = chn.nVibratoPos;
+ if(!m_SongFlags[SONG_FIRSTTICK] && chn.dwFlags[CHN_VIBRATO])
+ vibPos += chn.nVibratoSpeed;
+ if((vibPos & 0x3F) >= 32)
+ ramp ^= 0x7F;
+ if((chn.nTremoloPos & 0x3F) >= 32)
+ delta = -ramp;
+ else
+ delta = ramp;
+ }
+ if(GetType() != MOD_TYPE_DMF)
+ {
+ vol += (delta * chn.nTremoloDepth) / (1 << attenuation);
+ } else
+ {
+ // Tremolo in DMF always attenuates by a percentage of the current note volume
+ vol -= (vol * chn.nTremoloDepth * (64 - delta)) / (128 * 64);
+ }
+ }
+ if(!m_SongFlags[SONG_FIRSTTICK] || ((GetType() & (MOD_TYPE_IT|MOD_TYPE_MPT)) && !m_SongFlags[SONG_ITOLDEFFECTS]))
+ {
+ // IT compatibility: IT has its own, more precise tables
+ if(m_playBehaviour[kITVibratoTremoloPanbrello])
+ chn.nTremoloPos += 4 * chn.nTremoloSpeed;
+ else
+ chn.nTremoloPos += chn.nTremoloSpeed;
+ }
+ }
+}
+
+
+void CSoundFile::ProcessTremor(CHANNELINDEX nChn, int &vol)
+{
+ ModChannel &chn = m_PlayState.Chn[nChn];
+
+ if(m_playBehaviour[kFT2Tremor])
+ {
+ // FT2 Compatibility: Weird XM tremor.
+ // Test case: Tremor.xm
+ if(chn.nTremorCount & 0x80)
+ {
+ if(!m_SongFlags[SONG_FIRSTTICK] && chn.nCommand == CMD_TREMOR)
+ {
+ chn.nTremorCount &= ~0x20;
+ if(chn.nTremorCount == 0x80)
+ {
+ // Reached end of off-time
+ chn.nTremorCount = (chn.nTremorParam >> 4) | 0xC0;
+ } else if(chn.nTremorCount == 0xC0)
+ {
+ // Reached end of on-time
+ chn.nTremorCount = (chn.nTremorParam & 0x0F) | 0x80;
+ } else
+ {
+ chn.nTremorCount--;
+ }
+
+ chn.dwFlags.set(CHN_FASTVOLRAMP);
+ }
+
+ if((chn.nTremorCount & 0xE0) == 0x80)
+ {
+ vol = 0;
+ }
+ }
+ } else if(chn.nCommand == CMD_TREMOR)
+ {
+ // IT compatibility 12. / 13.: Tremor
+ if(m_playBehaviour[kITTremor])
+ {
+ if((chn.nTremorCount & 0x80) && chn.nLength)
+ {
+ if (chn.nTremorCount == 0x80)
+ chn.nTremorCount = (chn.nTremorParam >> 4) | 0xC0;
+ else if (chn.nTremorCount == 0xC0)
+ chn.nTremorCount = (chn.nTremorParam & 0x0F) | 0x80;
+ else
+ chn.nTremorCount--;
+ }
+
+ if((chn.nTremorCount & 0xC0) == 0x80)
+ vol = 0;
+ } else
+ {
+ uint8 ontime = chn.nTremorParam >> 4;
+ uint8 n = ontime + (chn.nTremorParam & 0x0F); // Total tremor cycle time (On + Off)
+ if ((!(GetType() & (MOD_TYPE_IT | MOD_TYPE_MPT))) || m_SongFlags[SONG_ITOLDEFFECTS])
+ {
+ n += 2;
+ ontime++;
+ }
+ uint8 tremcount = chn.nTremorCount;
+ if(!(GetType() & MOD_TYPE_XM))
+ {
+ if (tremcount >= n) tremcount = 0;
+ if (tremcount >= ontime) vol = 0;
+ chn.nTremorCount = tremcount + 1;
+ } else
+ {
+ if(m_SongFlags[SONG_FIRSTTICK])
+ {
+ // tremcount is only 0 on the first tremor tick after triggering a note.
+ if(tremcount > 0)
+ {
+ tremcount--;
+ }
+ } else
+ {
+ chn.nTremorCount = tremcount + 1;
+ }
+ if (tremcount % n >= ontime) vol = 0;
+ }
+ }
+ chn.dwFlags.set(CHN_FASTVOLRAMP);
+ }
+
+#ifndef NO_PLUGINS
+ // Plugin tremor
+ if(chn.nCommand == CMD_TREMOR && chn.pModInstrument && chn.pModInstrument->nMixPlug
+ && !chn.pModInstrument->dwFlags[INS_MUTE]
+ && !chn.dwFlags[CHN_MUTE | CHN_SYNCMUTE]
+ && ModCommand::IsNote(chn.nLastNote))
+ {
+ const ModInstrument *pIns = chn.pModInstrument;
+ IMixPlugin *pPlugin = m_MixPlugins[pIns->nMixPlug - 1].pMixPlugin;
+ if(pPlugin)
+ {
+ const bool isPlaying = pPlugin->IsNotePlaying(chn.nLastNote, nChn);
+ if(vol == 0 && isPlaying)
+ pPlugin->MidiCommand(*pIns, chn.nLastNote + NOTE_MAX_SPECIAL, 0, nChn);
+ else if(vol != 0 && !isPlaying)
+ pPlugin->MidiCommand(*pIns, chn.nLastNote, static_cast<uint16>(chn.nVolume), nChn);
+ }
+ }
+#endif // NO_PLUGINS
+}
+
+
+bool CSoundFile::IsEnvelopeProcessed(const ModChannel &chn, EnvelopeType env) const
+{
+ if(chn.pModInstrument == nullptr)
+ {
+ return false;
+ }
+ const InstrumentEnvelope &insEnv = chn.pModInstrument->GetEnvelope(env);
+
+ // IT Compatibility: S77/S79/S7B do not disable the envelope, they just pause the counter
+ // Test cases: s77.it, EnvLoops.xm, PanSustainRelease.xm
+ bool playIfPaused = m_playBehaviour[kITEnvelopePositionHandling] || m_playBehaviour[kFT2PanSustainRelease];
+ return ((chn.GetEnvelope(env).flags[ENV_ENABLED] || (insEnv.dwFlags[ENV_ENABLED] && playIfPaused))
+ && !insEnv.empty());
+}
+
+
+void CSoundFile::ProcessVolumeEnvelope(ModChannel &chn, int &vol) const
+{
+ if(IsEnvelopeProcessed(chn, ENV_VOLUME))
+ {
+ const ModInstrument *pIns = chn.pModInstrument;
+
+ if(m_playBehaviour[kITEnvelopePositionHandling] && chn.VolEnv.nEnvPosition == 0)
+ {
+ // If the envelope is disabled at the very same moment as it is triggered, we do not process anything.
+ return;
+ }
+ const int envpos = chn.VolEnv.nEnvPosition - (m_playBehaviour[kITEnvelopePositionHandling] ? 1 : 0);
+ // Get values in [0, 256]
+ int envval = pIns->VolEnv.GetValueFromPosition(envpos, 256);
+
+ // if we are in the release portion of the envelope,
+ // rescale envelope factor so that it is proportional to the release point
+ // and release envelope beginning.
+ if(pIns->VolEnv.nReleaseNode != ENV_RELEASE_NODE_UNSET
+ && chn.VolEnv.nEnvValueAtReleaseJump != NOT_YET_RELEASED)
+ {
+ int envValueAtReleaseJump = chn.VolEnv.nEnvValueAtReleaseJump;
+ int envValueAtReleaseNode = pIns->VolEnv[pIns->VolEnv.nReleaseNode].value * 4;
+
+ //If we have just hit the release node, force the current env value
+ //to be that of the release node. This works around the case where
+ // we have another node at the same position as the release node.
+ if(envpos == pIns->VolEnv[pIns->VolEnv.nReleaseNode].tick)
+ envval = envValueAtReleaseNode;
+
+ if(m_playBehaviour[kLegacyReleaseNode])
+ {
+ // Old, hard to grasp release node behaviour (additive)
+ int relativeVolumeChange = (envval - envValueAtReleaseNode) * 2;
+ envval = envValueAtReleaseJump + relativeVolumeChange;
+ } else
+ {
+ // New behaviour, truly relative to release node
+ if(envValueAtReleaseNode > 0)
+ envval = envValueAtReleaseJump * envval / envValueAtReleaseNode;
+ else
+ envval = 0;
+ }
+ }
+ vol = (vol * Clamp(envval, 0, 512)) / 256;
+ }
+
+}
+
+
+void CSoundFile::ProcessPanningEnvelope(ModChannel &chn) const
+{
+ if(IsEnvelopeProcessed(chn, ENV_PANNING))
+ {
+ const ModInstrument *pIns = chn.pModInstrument;
+
+ if(m_playBehaviour[kITEnvelopePositionHandling] && chn.PanEnv.nEnvPosition == 0)
+ {
+ // If the envelope is disabled at the very same moment as it is triggered, we do not process anything.
+ return;
+ }
+
+ const int envpos = chn.PanEnv.nEnvPosition - (m_playBehaviour[kITEnvelopePositionHandling] ? 1 : 0);
+ // Get values in [-32, 32]
+ const int envval = pIns->PanEnv.GetValueFromPosition(envpos, 64) - 32;
+
+ int pan = chn.nRealPan;
+ if(pan >= 128)
+ {
+ pan += (envval * (256 - pan)) / 32;
+ } else
+ {
+ pan += (envval * (pan)) / 32;
+ }
+ chn.nRealPan = Clamp(pan, 0, 256);
+
+ }
+}
+
+
+int CSoundFile::ProcessPitchFilterEnvelope(ModChannel &chn, int32 &period) const
+{
+ if(IsEnvelopeProcessed(chn, ENV_PITCH))
+ {
+ const ModInstrument *pIns = chn.pModInstrument;
+
+ if(m_playBehaviour[kITEnvelopePositionHandling] && chn.PitchEnv.nEnvPosition == 0)
+ {
+ // If the envelope is disabled at the very same moment as it is triggered, we do not process anything.
+ return -1;
+ }
+
+ const int envpos = chn.PitchEnv.nEnvPosition - (m_playBehaviour[kITEnvelopePositionHandling] ? 1 : 0);
+ // Get values in [-256, 256]
+#ifdef MODPLUG_TRACKER
+ const int32 range = ENVELOPE_MAX;
+ const int32 amp = 512;
+#else
+ // TODO: AMS2 envelopes behave differently when linear slides are off - emulate with 15 * (-128...127) >> 6
+ // Copy over vibrato behaviour for that?
+ const int32 range = GetType() == MOD_TYPE_AMS ? uint8_max : ENVELOPE_MAX;
+ int32 amp;
+ switch(GetType())
+ {
+ case MOD_TYPE_AMS: amp = 64; break;
+ case MOD_TYPE_MDL: amp = 192; break;
+ default: amp = 512;
+ }
+#endif
+ const int envval = pIns->PitchEnv.GetValueFromPosition(envpos, amp, range) - amp / 2;
+
+ if(chn.PitchEnv.flags[ENV_FILTER])
+ {
+ // Filter Envelope: controls cutoff frequency
+ return SetupChannelFilter(chn, !chn.dwFlags[CHN_FILTER], envval);
+ } else
+ {
+ // Pitch Envelope
+ if(chn.HasCustomTuning())
+ {
+ if(chn.nFineTune != envval)
+ {
+ chn.nFineTune = mpt::saturate_cast<int16>(envval);
+ chn.m_CalculateFreq = true;
+ //Preliminary tests indicated that this behavior
+ //is very close to original(with 12TET) when finestep count
+ //is 15.
+ }
+ } else //Original behavior
+ {
+ const bool useFreq = PeriodsAreFrequencies();
+ const uint32 (&upTable)[256] = useFreq ? LinearSlideUpTable : LinearSlideDownTable;
+ const uint32 (&downTable)[256] = useFreq ? LinearSlideDownTable : LinearSlideUpTable;
+
+ int l = envval;
+ if(l < 0)
+ {
+ l = -l;
+ LimitMax(l, 255);
+ period = Util::muldiv(period, downTable[l], 65536);
+ } else
+ {
+ LimitMax(l, 255);
+ period = Util::muldiv(period, upTable[l], 65536);
+ }
+ } //End: Original behavior.
+ }
+ }
+ return -1;
+}
+
+
+void CSoundFile::IncrementEnvelopePosition(ModChannel &chn, EnvelopeType envType) const
+{
+ ModChannel::EnvInfo &chnEnv = chn.GetEnvelope(envType);
+
+ if(chn.pModInstrument == nullptr || !chnEnv.flags[ENV_ENABLED])
+ {
+ return;
+ }
+
+ // Increase position
+ uint32 position = chnEnv.nEnvPosition + (m_playBehaviour[kITEnvelopePositionHandling] ? 0 : 1);
+
+ const InstrumentEnvelope &insEnv = chn.pModInstrument->GetEnvelope(envType);
+ if(insEnv.empty())
+ {
+ return;
+ }
+
+ bool endReached = false;
+
+ if(!m_playBehaviour[kITEnvelopePositionHandling])
+ {
+ // FT2-style envelope processing.
+ if(insEnv.dwFlags[ENV_LOOP])
+ {
+ // Normal loop active
+ uint32 end = insEnv[insEnv.nLoopEnd].tick;
+ if(!(GetType() & (MOD_TYPE_XM | MOD_TYPE_MT2))) end++;
+
+ // FT2 compatibility: If the sustain point is at the loop end and the sustain loop has been released, don't loop anymore.
+ // Test case: EnvLoops.xm
+ const bool escapeLoop = (insEnv.nLoopEnd == insEnv.nSustainEnd && insEnv.dwFlags[ENV_SUSTAIN] && chn.dwFlags[CHN_KEYOFF] && m_playBehaviour[kFT2EnvelopeEscape]);
+
+ if(position == end && !escapeLoop)
+ {
+ position = insEnv[insEnv.nLoopStart].tick;
+ }
+ }
+
+ if(insEnv.dwFlags[ENV_SUSTAIN] && !chn.dwFlags[CHN_KEYOFF])
+ {
+ // Envelope sustained
+ if(position == insEnv[insEnv.nSustainEnd].tick + 1u)
+ {
+ position = insEnv[insEnv.nSustainStart].tick;
+ // FT2 compatibility: If the panning envelope reaches its sustain point before key-off, it stays there forever.
+ // Test case: PanSustainRelease.xm
+ if(m_playBehaviour[kFT2PanSustainRelease] && envType == ENV_PANNING && !chn.dwFlags[CHN_KEYOFF])
+ {
+ chnEnv.flags.reset(ENV_ENABLED);
+ }
+ }
+ } else
+ {
+ // Limit to last envelope point
+ if(position > insEnv.back().tick)
+ {
+ // Env of envelope
+ position = insEnv.back().tick;
+ endReached = true;
+ }
+ }
+ } else
+ {
+ // IT envelope processing.
+ // Test case: EnvLoops.it
+ uint32 start, end;
+
+ // IT compatiblity: OpenMPT processes the key-off flag earlier than IT. Grab the flag from the previous tick instead.
+ // Test case: EnvOffLength.it
+ if(insEnv.dwFlags[ENV_SUSTAIN] && !chn.dwOldFlags[CHN_KEYOFF] && (chnEnv.nEnvValueAtReleaseJump == NOT_YET_RELEASED || m_playBehaviour[kReleaseNodePastSustainBug]))
+ {
+ // Envelope sustained
+ start = insEnv[insEnv.nSustainStart].tick;
+ end = insEnv[insEnv.nSustainEnd].tick + 1;
+ } else if(insEnv.dwFlags[ENV_LOOP])
+ {
+ // Normal loop active
+ start = insEnv[insEnv.nLoopStart].tick;
+ end = insEnv[insEnv.nLoopEnd].tick + 1;
+ } else
+ {
+ // Limit to last envelope point
+ start = end = insEnv.back().tick;
+ if(position > end)
+ {
+ // Env of envelope
+ endReached = true;
+ }
+ }
+
+ if(position >= end)
+ {
+ position = start;
+ }
+ }
+
+ if(envType == ENV_VOLUME && endReached)
+ {
+ // Special handling for volume envelopes at end of envelope
+ if((GetType() & (MOD_TYPE_IT | MOD_TYPE_MPT)) || (chn.dwFlags[CHN_KEYOFF] && GetType() != MOD_TYPE_MDL))
+ {
+ chn.dwFlags.set(CHN_NOTEFADE);
+ }
+
+ if(insEnv.back().value == 0 && (chn.nMasterChn > 0 || (GetType() & (MOD_TYPE_IT | MOD_TYPE_MPT))))
+ {
+ // Stop channel if the last envelope node is silent anyway.
+ chn.dwFlags.set(CHN_NOTEFADE);
+ chn.nFadeOutVol = 0;
+ chn.nRealVolume = 0;
+ chn.nCalcVolume = 0;
+ }
+ }
+
+ chnEnv.nEnvPosition = position + (m_playBehaviour[kITEnvelopePositionHandling] ? 1 : 0);
+
+}
+
+
+void CSoundFile::IncrementEnvelopePositions(ModChannel &chn) const
+{
+ if (chn.isFirstTick && GetType() == MOD_TYPE_MED)
+ return;
+ IncrementEnvelopePosition(chn, ENV_VOLUME);
+ IncrementEnvelopePosition(chn, ENV_PANNING);
+ IncrementEnvelopePosition(chn, ENV_PITCH);
+}
+
+
+void CSoundFile::ProcessInstrumentFade(ModChannel &chn, int &vol) const
+{
+ // FadeOut volume
+ if(chn.dwFlags[CHN_NOTEFADE] && chn.pModInstrument != nullptr)
+ {
+ const ModInstrument *pIns = chn.pModInstrument;
+
+ uint32 fadeout = pIns->nFadeOut;
+ if (fadeout)
+ {
+ chn.nFadeOutVol -= fadeout * 2;
+ if (chn.nFadeOutVol <= 0) chn.nFadeOutVol = 0;
+ vol = (vol * chn.nFadeOutVol) / 65536;
+ } else if (!chn.nFadeOutVol)
+ {
+ vol = 0;
+ }
+ }
+}
+
+
+void CSoundFile::ProcessPitchPanSeparation(int32 &pan, int note, const ModInstrument &instr)
+{
+ if(!instr.nPPS || note == NOTE_NONE)
+ return;
+ // with PPS = 16 / PPC = C-5, E-6 will pan hard right (and D#6 will not)
+ int32 delta = (note - instr.nPPC - NOTE_MIN) * instr.nPPS / 2;
+ pan = Clamp(pan + delta, 0, 256);
+}
+
+
+void CSoundFile::ProcessPanbrello(ModChannel &chn) const
+{
+ int pdelta = chn.nPanbrelloOffset;
+ if(chn.rowCommand.command == CMD_PANBRELLO)
+ {
+ uint32 panpos;
+ // IT compatibility: IT has its own, more precise tables
+ if(m_playBehaviour[kITVibratoTremoloPanbrello])
+ panpos = chn.nPanbrelloPos;
+ else
+ panpos = ((chn.nPanbrelloPos + 0x10) >> 2);
+
+ pdelta = GetVibratoDelta(chn.nPanbrelloType, panpos);
+
+ // IT compatibility: Sample-and-hold style random panbrello (tremolo and vibrato don't use this mechanism in IT)
+ // Test case: RandomWaveform.it
+ if(m_playBehaviour[kITSampleAndHoldPanbrello] && chn.nPanbrelloType == 3)
+ {
+ if(chn.nPanbrelloPos == 0 || chn.nPanbrelloPos >= chn.nPanbrelloSpeed)
+ {
+ chn.nPanbrelloPos = 0;
+ chn.nPanbrelloRandomMemory = static_cast<int8>(pdelta);
+ }
+ chn.nPanbrelloPos++;
+ pdelta = chn.nPanbrelloRandomMemory;
+ } else
+ {
+ chn.nPanbrelloPos += chn.nPanbrelloSpeed;
+ }
+ // IT compatibility: Panbrello effect is active until next note or panning command.
+ // Test case: PanbrelloHold.it
+ if(m_playBehaviour[kITPanbrelloHold])
+ {
+ chn.nPanbrelloOffset = static_cast<int8>(pdelta);
+ }
+ }
+ if(pdelta)
+ {
+ pdelta = ((pdelta * (int)chn.nPanbrelloDepth) + 2) / 8;
+ pdelta += chn.nRealPan;
+ chn.nRealPan = Clamp(pdelta, 0, 256);
+ }
+}
+
+
+void CSoundFile::ProcessArpeggio(CHANNELINDEX nChn, int32 &period, Tuning::NOTEINDEXTYPE &arpeggioSteps)
+{
+ ModChannel &chn = m_PlayState.Chn[nChn];
+
+#ifndef NO_PLUGINS
+ // Plugin arpeggio
+ if(chn.pModInstrument && chn.pModInstrument->nMixPlug
+ && !chn.pModInstrument->dwFlags[INS_MUTE]
+ && !chn.dwFlags[CHN_MUTE | CHN_SYNCMUTE])
+ {
+ const ModInstrument *pIns = chn.pModInstrument;
+ IMixPlugin *pPlugin = m_MixPlugins[pIns->nMixPlug - 1].pMixPlugin;
+ if(pPlugin)
+ {
+ uint8 step = 0;
+ const bool arpOnRow = (chn.rowCommand.command == CMD_ARPEGGIO);
+ const ModCommand::NOTE lastNote = ModCommand::IsNote(chn.nLastNote) ? static_cast<ModCommand::NOTE>(pIns->NoteMap[chn.nLastNote - NOTE_MIN]) : static_cast<ModCommand::NOTE>(NOTE_NONE);
+ if(arpOnRow)
+ {
+ switch(m_PlayState.m_nTickCount % 3)
+ {
+ case 1: step = chn.nArpeggio >> 4; break;
+ case 2: step = chn.nArpeggio & 0x0F; break;
+ }
+ chn.nArpeggioBaseNote = lastNote;
+ }
+
+ // Trigger new note:
+ // - If there's an arpeggio on this row and
+ // - the note to trigger is not the same as the previous arpeggio note or
+ // - a pattern note has just been triggered on this tick
+ // - If there's no arpeggio
+ // - but an arpeggio note is still active and
+ // - there's no note stop or new note that would stop it anyway
+ if((arpOnRow && chn.nArpeggioLastNote != chn.nArpeggioBaseNote + step && (!m_SongFlags[SONG_FIRSTTICK] || !chn.rowCommand.IsNote()))
+ || (!arpOnRow && chn.rowCommand.note == NOTE_NONE && chn.nArpeggioLastNote != NOTE_NONE))
+ SendMIDINote(nChn, chn.nArpeggioBaseNote + step, static_cast<uint16>(chn.nVolume));
+ // Stop note:
+ // - If some arpeggio note is still registered or
+ // - When starting an arpeggio on a row with no other note on it, stop some possibly still playing note.
+ if(chn.nArpeggioLastNote != NOTE_NONE)
+ SendMIDINote(nChn, chn.nArpeggioLastNote + NOTE_MAX_SPECIAL, 0);
+ else if(arpOnRow && m_SongFlags[SONG_FIRSTTICK] && !chn.rowCommand.IsNote() && ModCommand::IsNote(lastNote))
+ SendMIDINote(nChn, lastNote + NOTE_MAX_SPECIAL, 0);
+
+ if(chn.rowCommand.command == CMD_ARPEGGIO)
+ chn.nArpeggioLastNote = chn.nArpeggioBaseNote + step;
+ else
+ chn.nArpeggioLastNote = NOTE_NONE;
+ }
+ }
+#endif // NO_PLUGINS
+
+ if(chn.nCommand == CMD_ARPEGGIO)
+ {
+ if(chn.HasCustomTuning())
+ {
+ switch(m_PlayState.m_nTickCount % 3)
+ {
+ case 0: arpeggioSteps = 0; break;
+ case 1: arpeggioSteps = chn.nArpeggio >> 4; break;
+ case 2: arpeggioSteps = chn.nArpeggio & 0x0F; break;
+ }
+ chn.m_CalculateFreq = true;
+ chn.m_ReCalculateFreqOnFirstTick = true;
+ } else
+ {
+ if(GetType() == MOD_TYPE_MT2 && m_SongFlags[SONG_FIRSTTICK])
+ {
+ // MT2 resets any previous portamento when an arpeggio occurs.
+ chn.nPeriod = period = GetPeriodFromNote(chn.nNote, chn.nFineTune, chn.nC5Speed);
+ }
+
+ if(m_playBehaviour[kITArpeggio])
+ {
+ //IT playback compatibility 01 & 02
+
+ // Pattern delay restarts tick counting. Not quite correct yet!
+ const uint32 tick = m_PlayState.m_nTickCount % (m_PlayState.m_nMusicSpeed + m_PlayState.m_nFrameDelay);
+ if(chn.nArpeggio != 0)
+ {
+ uint32 arpRatio = 65536;
+ switch(tick % 3)
+ {
+ case 1: arpRatio = LinearSlideUpTable[(chn.nArpeggio >> 4) * 16]; break;
+ case 2: arpRatio = LinearSlideUpTable[(chn.nArpeggio & 0x0F) * 16]; break;
+ }
+ if(PeriodsAreFrequencies())
+ period = Util::muldivr(period, arpRatio, 65536);
+ else
+ period = Util::muldivr(period, 65536, arpRatio);
+ }
+ } else if(m_playBehaviour[kFT2Arpeggio])
+ {
+ // FastTracker 2: Swedish tracker logic (TM) arpeggio
+ if(!m_SongFlags[SONG_FIRSTTICK])
+ {
+ // Arpeggio is added on top of current note, but cannot do it the IT way because of
+ // the behaviour in ArpeggioClamp.xm.
+ // Test case: ArpSlide.xm
+ uint32 note = 0;
+
+ // The fact that arpeggio behaves in a totally fucked up way at 16 ticks/row or more is that the arpeggio offset LUT only has 16 entries in FT2.
+ // At more than 16 ticks/row, FT2 reads into the vibrato table, which is placed right after the arpeggio table.
+ // Test case: Arpeggio.xm
+ int arpPos = m_PlayState.m_nMusicSpeed - (m_PlayState.m_nTickCount % m_PlayState.m_nMusicSpeed);
+ if(arpPos > 16)
+ arpPos = 2;
+ else if(arpPos == 16)
+ arpPos = 0;
+ else
+ arpPos %= 3;
+ switch(arpPos)
+ {
+ case 1: note = (chn.nArpeggio >> 4); break;
+ case 2: note = (chn.nArpeggio & 0x0F); break;
+ }
+
+ if(arpPos != 0)
+ {
+ // Arpeggio is added on top of current note, but cannot do it the IT way because of
+ // the behaviour in ArpeggioClamp.xm.
+ // Test case: ArpSlide.xm
+ note += GetNoteFromPeriod(period, chn.nFineTune, chn.nC5Speed);
+
+ period = GetPeriodFromNote(note, chn.nFineTune, chn.nC5Speed);
+
+ // FT2 compatibility: FT2 has a different note limit for Arpeggio.
+ // Test case: ArpeggioClamp.xm
+ if(note >= 108 + NOTE_MIN)
+ {
+ period = std::max(static_cast<uint32>(period), GetPeriodFromNote(108 + NOTE_MIN, 0, chn.nC5Speed));
+ }
+ }
+ }
+ }
+ // Other trackers
+ else
+ {
+ uint32 tick = m_PlayState.m_nTickCount;
+
+ // TODO other likely formats for MOD case: MED, OKT, etc
+ uint8 note = (GetType() != MOD_TYPE_MOD) ? chn.nNote : static_cast<uint8>(GetNoteFromPeriod(period, chn.nFineTune, chn.nC5Speed));
+ if(GetType() & (MOD_TYPE_DBM | MOD_TYPE_DIGI))
+ tick += 2;
+ switch(tick % 3)
+ {
+ case 1: note += (chn.nArpeggio >> 4); break;
+ case 2: note += (chn.nArpeggio & 0x0F); break;
+ }
+ if(note != chn.nNote || (GetType() & (MOD_TYPE_DBM | MOD_TYPE_DIGI | MOD_TYPE_STM)) || m_playBehaviour[KST3PortaAfterArpeggio])
+ {
+ if(m_SongFlags[SONG_PT_MODE])
+ {
+ // Weird arpeggio wrap-around in ProTracker.
+ // Test case: ArpWraparound.mod, and the snare sound in "Jim is dead" by doh.
+ if(note == NOTE_MIDDLEC + 24)
+ {
+ period = int32_max;
+ return;
+ } else if(note > NOTE_MIDDLEC + 24)
+ {
+ note -= 37;
+ }
+ }
+ period = GetPeriodFromNote(note, chn.nFineTune, chn.nC5Speed);
+
+ if(GetType() & (MOD_TYPE_DBM | MOD_TYPE_DIGI | MOD_TYPE_PSM | MOD_TYPE_STM | MOD_TYPE_OKT))
+ {
+ // The arpeggio note offset remains effective after the end of the current row in ScreamTracker 2.
+ // This fixes the flute lead in MORPH.STM by Skaven, pattern 27.
+ // Note that ScreamTracker 2.24 handles arpeggio slightly differently: It only considers the lower
+ // nibble, and switches to that note halfway through the row.
+ chn.nPeriod = period;
+ } else if(m_playBehaviour[KST3PortaAfterArpeggio])
+ {
+ chn.nArpeggioLastNote = note;
+ }
+ }
+ }
+ }
+ }
+}
+
+
+void CSoundFile::ProcessVibrato(CHANNELINDEX nChn, int32 &period, Tuning::RATIOTYPE &vibratoFactor)
+{
+ ModChannel &chn = m_PlayState.Chn[nChn];
+
+ if(chn.dwFlags[CHN_VIBRATO])
+ {
+ const bool advancePosition = !m_SongFlags[SONG_FIRSTTICK] || ((GetType() & (MOD_TYPE_IT | MOD_TYPE_MPT)) && !(m_SongFlags[SONG_ITOLDEFFECTS]));
+
+ if(GetType() == MOD_TYPE_669)
+ {
+ if(chn.nVibratoPos % 2u)
+ {
+ period += chn.nVibratoDepth * 167; // Already multiplied by 4, and it seems like the real factor here is 669... how original =)
+ }
+ chn.nVibratoPos++;
+ return;
+ }
+
+ // IT compatibility: IT has its own, more precise tables and pre-increments the vibrato position
+ if(advancePosition && m_playBehaviour[kITVibratoTremoloPanbrello])
+ chn.nVibratoPos += 4 * chn.nVibratoSpeed;
+
+ int vdelta = GetVibratoDelta(chn.nVibratoType, chn.nVibratoPos);
+
+ if(chn.HasCustomTuning())
+ {
+ //Hack implementation: Scaling vibratofactor to [0.95; 1.05]
+ //using figure from above tables and vibratodepth parameter
+ vibratoFactor += 0.05f * (vdelta * chn.nVibratoDepth) / (128.0f * 60.0f);
+ chn.m_CalculateFreq = true;
+ chn.m_ReCalculateFreqOnFirstTick = false;
+
+ if(m_PlayState.m_nTickCount + 1 == m_PlayState.m_nMusicSpeed)
+ chn.m_ReCalculateFreqOnFirstTick = true;
+ } else
+ {
+ // Original behaviour
+ if(m_SongFlags.test_all(SONG_FIRSTTICK | SONG_PT_MODE) || ((GetType() & (MOD_TYPE_DIGI | MOD_TYPE_DBM)) && m_SongFlags[SONG_FIRSTTICK]))
+ {
+ // ProTracker doesn't apply vibrato nor advance on the first tick.
+ // Test case: VibratoReset.mod
+ return;
+ } else if((GetType() & (MOD_TYPE_XM | MOD_TYPE_MOD)) && (chn.nVibratoType & 0x03) == 1)
+ {
+ // FT2 compatibility: Vibrato ramp down table is upside down.
+ // Test case: VibratoWaveforms.xm
+ vdelta = -vdelta;
+ }
+
+ uint32 vdepth;
+ // IT compatibility: correct vibrato depth
+ if(m_playBehaviour[kITVibratoTremoloPanbrello])
+ {
+ // Yes, vibrato goes backwards with old effects enabled!
+ if(m_SongFlags[SONG_ITOLDEFFECTS])
+ {
+ // Test case: vibrato-oldfx.it
+ vdepth = 5;
+ } else
+ {
+ // Test case: vibrato.it
+ vdepth = 6;
+ vdelta = -vdelta;
+ }
+ } else
+ {
+ if(m_SongFlags[SONG_S3MOLDVIBRATO])
+ vdepth = 5;
+ else if(GetType() == MOD_TYPE_DTM)
+ vdepth = 8;
+ else if(GetType() & (MOD_TYPE_DBM | MOD_TYPE_MTM))
+ vdepth = 7;
+ else if((GetType() & (MOD_TYPE_IT | MOD_TYPE_MPT)) && !m_SongFlags[SONG_ITOLDEFFECTS])
+ vdepth = 7;
+ else
+ vdepth = 6;
+
+ // ST3 compatibility: Do not distinguish between vibrato types in effect memory
+ // Test case: VibratoTypeChange.s3m
+ if(m_playBehaviour[kST3VibratoMemory] && chn.rowCommand.command == CMD_FINEVIBRATO)
+ vdepth += 2;
+ }
+
+ vdelta = (-vdelta * static_cast<int>(chn.nVibratoDepth)) / (1 << vdepth);
+
+ DoFreqSlide(chn, period, vdelta);
+
+ // Process MIDI vibrato for plugins:
+#ifndef NO_PLUGINS
+ IMixPlugin *plugin = GetChannelInstrumentPlugin(m_PlayState.Chn[nChn]);
+ if(plugin != nullptr)
+ {
+ // If the Pitch Wheel Depth is configured correctly (so it's the same as the plugin's PWD),
+ // MIDI vibrato will sound identical to vibrato with linear slides enabled.
+ int8 pwd = 2;
+ if(chn.pModInstrument != nullptr)
+ {
+ pwd = chn.pModInstrument->midiPWD;
+ }
+ plugin->MidiVibrato(vdelta, pwd, nChn);
+ }
+#endif // NO_PLUGINS
+ }
+
+ // Advance vibrato position - IT updates on every tick, unless "old effects" are enabled (in this case it only updates on non-first ticks like other trackers)
+ // IT compatibility: IT has its own, more precise tables and pre-increments the vibrato position
+ if(advancePosition && !m_playBehaviour[kITVibratoTremoloPanbrello])
+ chn.nVibratoPos += chn.nVibratoSpeed;
+ } else if(chn.dwOldFlags[CHN_VIBRATO])
+ {
+ // Stop MIDI vibrato for plugins:
+#ifndef NO_PLUGINS
+ IMixPlugin *plugin = GetChannelInstrumentPlugin(m_PlayState.Chn[nChn]);
+ if(plugin != nullptr)
+ {
+ plugin->MidiVibrato(0, 0, nChn);
+ }
+#endif // NO_PLUGINS
+ }
+}
+
+
+void CSoundFile::ProcessSampleAutoVibrato(ModChannel &chn, int32 &period, Tuning::RATIOTYPE &vibratoFactor, int &nPeriodFrac) const
+{
+ // Sample Auto-Vibrato
+ if(chn.pModSample != nullptr && chn.pModSample->nVibDepth)
+ {
+ const ModSample *pSmp = chn.pModSample;
+ const bool hasTuning = chn.HasCustomTuning();
+
+ // In IT compatible mode, we use always frequencies, otherwise we use periods, which are upside down.
+ // In this context, the "up" tables refer to the tables that increase frequency, and the down tables are the ones that decrease frequency.
+ const bool useFreq = PeriodsAreFrequencies();
+ const uint32 (&upTable)[256] = useFreq ? LinearSlideUpTable : LinearSlideDownTable;
+ const uint32 (&downTable)[256] = useFreq ? LinearSlideDownTable : LinearSlideUpTable;
+ const uint32 (&fineUpTable)[16] = useFreq ? FineLinearSlideUpTable : FineLinearSlideDownTable;
+ const uint32 (&fineDownTable)[16] = useFreq ? FineLinearSlideDownTable : FineLinearSlideUpTable;
+
+ // IT compatibility: Autovibrato is so much different in IT that I just put this in a separate code block, to get rid of a dozen IsCompatibilityMode() calls.
+ if(m_playBehaviour[kITVibratoTremoloPanbrello] && !hasTuning && GetType() != MOD_TYPE_MT2)
+ {
+ if(!pSmp->nVibRate)
+ return;
+
+ // Schism's autovibrato code
+
+ /*
+ X86 Assembler from ITTECH.TXT:
+ 1) Mov AX, [SomeVariableNameRelatingToVibrato]
+ 2) Add AL, Rate
+ 3) AdC AH, 0
+ 4) AH contains the depth of the vibrato as a fine-linear slide.
+ 5) Mov [SomeVariableNameRelatingToVibrato], AX ; For the next cycle.
+ */
+ const int vibpos = chn.nAutoVibPos & 0xFF;
+ int adepth = chn.nAutoVibDepth; // (1)
+ adepth += pSmp->nVibSweep; // (2 & 3)
+ LimitMax(adepth, static_cast<int>(pSmp->nVibDepth * 256u));
+ chn.nAutoVibDepth = adepth; // (5)
+ adepth /= 256; // (4)
+
+ chn.nAutoVibPos += pSmp->nVibRate;
+
+ int vdelta;
+ switch(pSmp->nVibType)
+ {
+ case VIB_RANDOM:
+ vdelta = mpt::random<int, 7>(AccessPRNG()) - 0x40;
+ break;
+ case VIB_RAMP_DOWN:
+ vdelta = 64 - (vibpos + 1) / 2;
+ break;
+ case VIB_RAMP_UP:
+ vdelta = ((vibpos + 1) / 2) - 64;
+ break;
+ case VIB_SQUARE:
+ vdelta = vibpos < 128 ? 64 : 0;
+ break;
+ case VIB_SINE:
+ default:
+ vdelta = ITSinusTable[vibpos];
+ break;
+ }
+
+ vdelta = (vdelta * adepth) / 64;
+ uint32 l = std::abs(vdelta);
+ LimitMax(period, Util::MaxValueOfType(period) / 256);
+ period *= 256;
+ if(vdelta < 0)
+ {
+ vdelta = Util::muldiv(period, downTable[l / 4u], 0x10000) - period;
+ if (l & 0x03)
+ {
+ vdelta += Util::muldiv(period, fineDownTable[l & 0x03], 0x10000) - period;
+ }
+ } else
+ {
+ vdelta = Util::muldiv(period, upTable[l / 4u], 0x10000) - period;
+ if (l & 0x03)
+ {
+ vdelta += Util::muldiv(period, fineUpTable[l & 0x03], 0x10000) - period;
+ }
+ }
+ period = (period + vdelta) / 256;
+ nPeriodFrac = vdelta & 0xFF;
+ } else
+ {
+ // MPT's autovibrato code
+ if (pSmp->nVibSweep == 0 && !(GetType() & (MOD_TYPE_IT | MOD_TYPE_MPT)))
+ {
+ chn.nAutoVibDepth = pSmp->nVibDepth * 256;
+ } else
+ {
+ // Calculate current autovibrato depth using vibsweep
+ if (GetType() & (MOD_TYPE_IT | MOD_TYPE_MPT))
+ {
+ chn.nAutoVibDepth += pSmp->nVibSweep * 2u;
+ } else
+ {
+ if(!chn.dwFlags[CHN_KEYOFF])
+ {
+ chn.nAutoVibDepth += (pSmp->nVibDepth * 256u) / pSmp->nVibSweep;
+ }
+ }
+ LimitMax(chn.nAutoVibDepth, static_cast<int>(pSmp->nVibDepth * 256u));
+ }
+ chn.nAutoVibPos += pSmp->nVibRate;
+ int vdelta;
+ switch(pSmp->nVibType)
+ {
+ case VIB_RANDOM:
+ vdelta = ModRandomTable[chn.nAutoVibPos & 0x3F];
+ chn.nAutoVibPos++;
+ break;
+ case VIB_RAMP_DOWN:
+ vdelta = ((0x40 - (chn.nAutoVibPos / 2u)) & 0x7F) - 0x40;
+ break;
+ case VIB_RAMP_UP:
+ vdelta = ((0x40 + (chn.nAutoVibPos / 2u)) & 0x7F) - 0x40;
+ break;
+ case VIB_SQUARE:
+ vdelta = (chn.nAutoVibPos & 128) ? +64 : -64;
+ break;
+ case VIB_SINE:
+ default:
+ if(GetType() != MOD_TYPE_MT2)
+ {
+ vdelta = -ITSinusTable[chn.nAutoVibPos & 0xFF];
+ } else
+ {
+ // Fix flat-sounding pads in "another worlds" by Eternal Engine.
+ // Vibrato starts at the maximum amplitude of the sine wave
+ // and the vibrato frequency never decreases below the original note's frequency.
+ vdelta = (-ITSinusTable[(chn.nAutoVibPos + 192) & 0xFF] + 64) / 2;
+ }
+ }
+ int n = (vdelta * chn.nAutoVibDepth) / 256;
+
+ if(hasTuning)
+ {
+ //Vib sweep is not taken into account here.
+ vibratoFactor += 0.05F * pSmp->nVibDepth * vdelta / 4096.0f; //4096 == 64^2
+ //See vibrato for explanation.
+ chn.m_CalculateFreq = true;
+ /*
+ Finestep vibrato:
+ const float autoVibDepth = pSmp->nVibDepth * val / 4096.0f; //4096 == 64^2
+ vibratoFineSteps += static_cast<CTuning::FINESTEPTYPE>(chn.pModInstrument->pTuning->GetFineStepCount() * autoVibDepth);
+ chn.m_CalculateFreq = true;
+ */
+ }
+ else //Original behavior
+ {
+ if (GetType() != MOD_TYPE_XM)
+ {
+ int df1, df2;
+ if (n < 0)
+ {
+ n = -n;
+ uint32 n1 = n / 256;
+ df1 = downTable[n1];
+ df2 = downTable[n1+1];
+ } else
+ {
+ uint32 n1 = n / 256;
+ df1 = upTable[n1];
+ df2 = upTable[n1+1];
+ }
+ n /= 4;
+ period = Util::muldiv(period, df1 + ((df2 - df1) * (n & 0x3F) / 64), 256);
+ nPeriodFrac = period & 0xFF;
+ period /= 256;
+ } else
+ {
+ period += (n / 64);
+ }
+ } //Original MPT behavior
+ }
+ }
+}
+
+
+void CSoundFile::ProcessRamping(ModChannel &chn) const
+{
+ chn.leftRamp = chn.rightRamp = 0;
+ LimitMax(chn.newLeftVol, int32_max >> VOLUMERAMPPRECISION);
+ LimitMax(chn.newRightVol, int32_max >> VOLUMERAMPPRECISION);
+ if(chn.dwFlags[CHN_VOLUMERAMP] && (chn.leftVol != chn.newLeftVol || chn.rightVol != chn.newRightVol))
+ {
+ const bool rampUp = (chn.newLeftVol > chn.leftVol) || (chn.newRightVol > chn.rightVol);
+ int32 rampLength, globalRampLength, instrRampLength = 0;
+ rampLength = globalRampLength = (rampUp ? m_MixerSettings.GetVolumeRampUpSamples() : m_MixerSettings.GetVolumeRampDownSamples());
+ //XXXih: add real support for bidi ramping here
+
+ if(m_playBehaviour[kFT2VolumeRamping] && (GetType() & MOD_TYPE_XM))
+ {
+ // apply FT2-style super-soft volume ramping (5ms), overriding openmpt settings
+ rampLength = globalRampLength = Util::muldivr(5, m_MixerSettings.gdwMixingFreq, 1000);
+ }
+
+ if(chn.pModInstrument != nullptr && rampUp)
+ {
+ instrRampLength = chn.pModInstrument->nVolRampUp;
+ rampLength = instrRampLength ? (m_MixerSettings.gdwMixingFreq * instrRampLength / 100000) : globalRampLength;
+ }
+ const bool enableCustomRamp = (instrRampLength > 0);
+
+ if(!rampLength)
+ {
+ rampLength = 1;
+ }
+
+ int32 leftDelta = ((chn.newLeftVol - chn.leftVol) * (1 << VOLUMERAMPPRECISION));
+ int32 rightDelta = ((chn.newRightVol - chn.rightVol) * (1 << VOLUMERAMPPRECISION));
+ if(!enableCustomRamp)
+ {
+ // Extra-smooth ramping, unless we're forced to use the default values
+ if((chn.leftVol | chn.rightVol) && (chn.newLeftVol | chn.newRightVol) && !chn.dwFlags[CHN_FASTVOLRAMP])
+ {
+ rampLength = m_PlayState.m_nBufferCount;
+ Limit(rampLength, globalRampLength, int32(1 << (VOLUMERAMPPRECISION - 1)));
+ }
+ }
+
+ chn.leftRamp = leftDelta / rampLength;
+ chn.rightRamp = rightDelta / rampLength;
+ chn.leftVol = chn.newLeftVol - ((chn.leftRamp * rampLength) / (1 << VOLUMERAMPPRECISION));
+ chn.rightVol = chn.newRightVol - ((chn.rightRamp * rampLength) / (1 << VOLUMERAMPPRECISION));
+
+ if (chn.leftRamp|chn.rightRamp)
+ {
+ chn.nRampLength = rampLength;
+ } else
+ {
+ chn.dwFlags.reset(CHN_VOLUMERAMP);
+ chn.leftVol = chn.newLeftVol;
+ chn.rightVol = chn.newRightVol;
+ }
+ } else
+ {
+ chn.dwFlags.reset(CHN_VOLUMERAMP);
+ chn.leftVol = chn.newLeftVol;
+ chn.rightVol = chn.newRightVol;
+ }
+ chn.rampLeftVol = chn.leftVol * (1 << VOLUMERAMPPRECISION);
+ chn.rampRightVol = chn.rightVol * (1 << VOLUMERAMPPRECISION);
+ chn.dwFlags.reset(CHN_FASTVOLRAMP);
+}
+
+
+// Returns channel increment and frequency with FREQ_FRACBITS fractional bits
+std::pair<SamplePosition, uint32> CSoundFile::GetChannelIncrement(const ModChannel &chn, uint32 period, int periodFrac) const
+{
+ uint32 freq;
+ if(!chn.HasCustomTuning())
+ freq = GetFreqFromPeriod(period, chn.nC5Speed, periodFrac);
+ else
+ freq = chn.nPeriod;
+
+ const ModInstrument *ins = chn.pModInstrument;
+
+ if(int32 finetune = chn.microTuning; finetune != 0)
+ {
+ if(ins)
+ finetune *= ins->midiPWD;
+ if(finetune)
+ freq = mpt::saturate_round<uint32>(freq * std::pow(2.0, finetune / (12.0 * 256.0 * 128.0)));
+ }
+
+ // Applying Pitch/Tempo lock
+ if(ins && ins->pitchToTempoLock.GetRaw())
+ {
+ freq = Util::muldivr(freq, m_PlayState.m_nMusicTempo.GetRaw(), ins->pitchToTempoLock.GetRaw());
+ }
+
+ // Avoid increment to overflow and become negative with unrealisticly high frequencies.
+ LimitMax(freq, uint32(int32_max));
+ return {SamplePosition::Ratio(freq, m_MixerSettings.gdwMixingFreq << FREQ_FRACBITS), freq};
+}
+
+
+////////////////////////////////////////////////////////////////////////////////////////////
+// Handles envelopes & mixer setup
+
+bool CSoundFile::ReadNote()
+{
+#ifdef MODPLUG_TRACKER
+ // Checking end of row ?
+ if(m_SongFlags[SONG_PAUSED])
+ {
+ m_PlayState.m_nTickCount = 0;
+ if (!m_PlayState.m_nMusicSpeed) m_PlayState.m_nMusicSpeed = 6;
+ if (!m_PlayState.m_nMusicTempo.GetRaw()) m_PlayState.m_nMusicTempo.Set(125);
+ } else
+#endif // MODPLUG_TRACKER
+ {
+ if(!ProcessRow())
+ return false;
+ }
+ ////////////////////////////////////////////////////////////////////////////////////
+ if (m_PlayState.m_nMusicTempo.GetRaw() == 0) return false;
+
+ m_PlayState.m_nSamplesPerTick = GetTickDuration(m_PlayState);
+ m_PlayState.m_nBufferCount = m_PlayState.m_nSamplesPerTick;
+
+ // Master Volume + Pre-Amplification / Attenuation setup
+ uint32 nMasterVol;
+ {
+ CHANNELINDEX nchn32 = Clamp(m_nChannels, CHANNELINDEX(1), CHANNELINDEX(31));
+
+ uint32 mastervol;
+
+ if (m_PlayConfig.getUseGlobalPreAmp())
+ {
+ int realmastervol = m_MixerSettings.m_nPreAmp;
+ if (realmastervol > 0x80)
+ {
+ //Attenuate global pre-amp depending on num channels
+ realmastervol = 0x80 + ((realmastervol - 0x80) * (nchn32 + 4)) / 16;
+ }
+ mastervol = (realmastervol * (m_nSamplePreAmp)) / 64;
+ } else
+ {
+ //Preferred option: don't use global pre-amp at all.
+ mastervol = m_nSamplePreAmp;
+ }
+
+ if (m_PlayConfig.getUseGlobalPreAmp())
+ {
+ uint32 attenuation =
+#ifndef NO_AGC
+ (m_MixerSettings.DSPMask & SNDDSP_AGC) ? PreAmpAGCTable[nchn32 / 2u] :
+#endif
+ PreAmpTable[nchn32 / 2u];
+ if(attenuation < 1) attenuation = 1;
+ nMasterVol = (mastervol << 7) / attenuation;
+ } else
+ {
+ nMasterVol = mastervol;
+ }
+ }
+
+ ////////////////////////////////////////////////////////////////////////////////////
+ // Update channels data
+ m_nMixChannels = 0;
+ for (CHANNELINDEX nChn = 0; nChn < MAX_CHANNELS; nChn++)
+ {
+ ModChannel &chn = m_PlayState.Chn[nChn];
+ // FT2 Compatibility: Prevent notes to be stopped after a fadeout. This way, a portamento effect can pick up a faded instrument which is long enough.
+ // This occurs for example in the bassline (channel 11) of jt_burn.xm. I hope this won't break anything else...
+ // I also suppose this could decrease mixing performance a bit, but hey, which CPU can't handle 32 muted channels these days... :-)
+ if(chn.dwFlags[CHN_NOTEFADE] && (!(chn.nFadeOutVol|chn.leftVol|chn.rightVol)) && !m_playBehaviour[kFT2ProcessSilentChannels])
+ {
+ chn.nLength = 0;
+ chn.nROfs = chn.nLOfs = 0;
+ }
+ // Check for unused channel
+ if(chn.dwFlags[CHN_MUTE] || (nChn >= m_nChannels && !chn.nLength))
+ {
+ if(nChn < m_nChannels)
+ {
+ // Process MIDI macros on channels that are currently muted.
+ ProcessMacroOnChannel(nChn);
+ }
+ chn.nLeftVU = chn.nRightVU = 0;
+ continue;
+ }
+ // Reset channel data
+ chn.increment = SamplePosition(0);
+ chn.nRealVolume = 0;
+ chn.nCalcVolume = 0;
+
+ chn.nRampLength = 0;
+
+ //Aux variables
+ Tuning::RATIOTYPE vibratoFactor = 1;
+ Tuning::NOTEINDEXTYPE arpeggioSteps = 0;
+
+ const ModInstrument *pIns = chn.pModInstrument;
+
+ // Calc Frequency
+ int32 period = 0;
+
+ // Also process envelopes etc. when there's a plugin on this channel, for possible fake automation using volume and pan data.
+ // We only care about master channels, though, since automation only "happens" on them.
+ const bool samplePlaying = (chn.nPeriod && chn.nLength);
+ const bool plugAssigned = (nChn < m_nChannels) && (ChnSettings[nChn].nMixPlugin || (chn.pModInstrument != nullptr && chn.pModInstrument->nMixPlug));
+ if (samplePlaying || plugAssigned)
+ {
+ int vol = chn.nVolume;
+ int insVol = chn.nInsVol; // This is the "SV * IV" value in ITTECH.TXT
+
+ ProcessVolumeSwing(chn, m_playBehaviour[kITSwingBehaviour] ? insVol : vol);
+ ProcessPanningSwing(chn);
+ ProcessTremolo(chn, vol);
+ ProcessTremor(nChn, vol);
+
+ // Clip volume and multiply (extend to 14 bits)
+ Limit(vol, 0, 256);
+ vol <<= 6;
+
+ // Process Envelopes
+ if (pIns)
+ {
+ if(m_playBehaviour[kITEnvelopePositionHandling])
+ {
+ // In IT compatible mode, envelope position indices are shifted by one for proper envelope pausing,
+ // so we have to update the position before we actually process the envelopes.
+ // When using MPT behaviour, we get the envelope position for the next tick while we are still calculating the current tick,
+ // which then results in wrong position information when the envelope is paused on the next row.
+ // Test cases: s77.it
+ IncrementEnvelopePositions(chn);
+ }
+ ProcessVolumeEnvelope(chn, vol);
+ ProcessInstrumentFade(chn, vol);
+ ProcessPanningEnvelope(chn);
+
+ if(!m_playBehaviour[kITPitchPanSeparation] && chn.nNote != NOTE_NONE && chn.pModInstrument && chn.pModInstrument->nPPS != 0)
+ ProcessPitchPanSeparation(chn.nRealPan, chn.nNote, *chn.pModInstrument);
+ } else
+ {
+ // No Envelope: key off => note cut
+ if(chn.dwFlags[CHN_NOTEFADE]) // 1.41-: CHN_KEYOFF|CHN_NOTEFADE
+ {
+ chn.nFadeOutVol = 0;
+ vol = 0;
+ }
+ }
+
+ if(chn.isPaused)
+ vol = 0;
+
+ // vol is 14-bits
+ if (vol)
+ {
+ // IMPORTANT: chn.nRealVolume is 14 bits !!!
+ // -> Util::muldiv( 14+8, 6+6, 18); => RealVolume: 14-bit result (22+12-20)
+
+ if(chn.dwFlags[CHN_SYNCMUTE])
+ {
+ chn.nRealVolume = 0;
+ } else if (m_PlayConfig.getGlobalVolumeAppliesToMaster())
+ {
+ // Don't let global volume affect level of sample if
+ // Global volume is going to be applied to master output anyway.
+ chn.nRealVolume = Util::muldiv(vol * MAX_GLOBAL_VOLUME, chn.nGlobalVol * insVol, 1 << 20);
+ } else
+ {
+ chn.nRealVolume = Util::muldiv(vol * m_PlayState.m_nGlobalVolume, chn.nGlobalVol * insVol, 1 << 20);
+ }
+ }
+
+ chn.nCalcVolume = vol; // Update calculated volume for MIDI macros
+
+ // ST3 only clamps the final output period, but never the channel's internal period.
+ // Test case: PeriodLimit.s3m
+ if (chn.nPeriod < m_nMinPeriod
+ && GetType() != MOD_TYPE_S3M
+ && !PeriodsAreFrequencies())
+ {
+ chn.nPeriod = m_nMinPeriod;
+ } else if(chn.nPeriod >= m_nMaxPeriod && m_playBehaviour[kApplyUpperPeriodLimit] && !PeriodsAreFrequencies())
+ {
+ // ...but on the other hand, ST3's SoundBlaster driver clamps the maximum channel period.
+ // Test case: PeriodLimitUpper.s3m
+ chn.nPeriod = m_nMaxPeriod;
+ }
+ if(m_playBehaviour[kFT2Periods]) Clamp(chn.nPeriod, 1, 31999);
+ period = chn.nPeriod;
+
+ // When glissando mode is set to semitones, clamp to the next halftone.
+ if((chn.dwFlags & (CHN_GLISSANDO | CHN_PORTAMENTO)) == (CHN_GLISSANDO | CHN_PORTAMENTO)
+ && (!m_SongFlags[SONG_PT_MODE] || (chn.rowCommand.IsPortamento() && !m_SongFlags[SONG_FIRSTTICK])))
+ {
+ if(period != chn.cachedPeriod)
+ {
+ // Only recompute this whole thing in case the base period has changed.
+ chn.cachedPeriod = period;
+ chn.glissandoPeriod = GetPeriodFromNote(GetNoteFromPeriod(period, chn.nFineTune, chn.nC5Speed), chn.nFineTune, chn.nC5Speed);
+ }
+ period = chn.glissandoPeriod;
+ }
+
+ ProcessArpeggio(nChn, period, arpeggioSteps);
+
+ // Preserve Amiga freq limits.
+ // In ST3, the frequency is always clamped to periods 113 to 856, while in ProTracker,
+ // the limit is variable, depending on the finetune of the sample.
+ // The int32_max test is for the arpeggio wrap-around in ProcessArpeggio().
+ // Test case: AmigaLimits.s3m, AmigaLimitsFinetune.mod
+ if(m_SongFlags[SONG_AMIGALIMITS | SONG_PT_MODE] && period != int32_max)
+ {
+ int limitLow = 113 * 4, limitHigh = 856 * 4;
+ if(GetType() != MOD_TYPE_S3M)
+ {
+ const int tableOffset = XM2MODFineTune(chn.nFineTune) * 12;
+ limitLow = ProTrackerTunedPeriods[tableOffset + 11] / 2;
+ limitHigh = ProTrackerTunedPeriods[tableOffset] * 2;
+ // Amiga cannot actually keep up with lower periods
+ if(limitLow < 113 * 4) limitLow = 113 * 4;
+ }
+ Limit(period, limitLow, limitHigh);
+ Limit(chn.nPeriod, limitLow, limitHigh);
+ }
+
+ ProcessPanbrello(chn);
+ }
+
+ // IT Compatibility: Ensure that there is no pan swing, panbrello, panning envelopes, etc. applied on surround channels.
+ // Test case: surround-pan.it
+ if(chn.dwFlags[CHN_SURROUND] && !m_SongFlags[SONG_SURROUNDPAN] && m_playBehaviour[kITNoSurroundPan])
+ {
+ chn.nRealPan = 128;
+ }
+
+ // Now that all relevant envelopes etc. have been processed, we can parse the MIDI macro data.
+ ProcessMacroOnChannel(nChn);
+
+ // After MIDI macros have been processed, we can also process the pitch / filter envelope and other pitch-related things.
+ if(samplePlaying)
+ {
+ int cutoff = ProcessPitchFilterEnvelope(chn, period);
+ if(cutoff >= 0 && chn.dwFlags[CHN_ADLIB] && m_opl)
+ {
+ // Cutoff doubles as modulator intensity for FM instruments
+ m_opl->Volume(nChn, static_cast<uint8>(cutoff / 4), true);
+ }
+ }
+
+ if(chn.rowCommand.volcmd == VOLCMD_VIBRATODEPTH &&
+ (chn.rowCommand.command == CMD_VIBRATO || chn.rowCommand.command == CMD_VIBRATOVOL || chn.rowCommand.command == CMD_FINEVIBRATO))
+ {
+ if(GetType() == MOD_TYPE_XM)
+ {
+ // XM Compatibility: Vibrato should be advanced twice (but not added up) if both volume-column and effect column vibrato is present.
+ // Effect column vibrato parameter has precedence if non-zero.
+ // Test case: VibratoDouble.xm
+ if(!m_SongFlags[SONG_FIRSTTICK])
+ chn.nVibratoPos += chn.nVibratoSpeed;
+ } else if(GetType() & (MOD_TYPE_IT | MOD_TYPE_MPT))
+ {
+ // IT Compatibility: Vibrato should be applied twice if both volume-colum and effect column vibrato is present.
+ // Volume column vibrato parameter has precedence if non-zero.
+ // Test case: VibratoDouble.it
+ Vibrato(chn, chn.rowCommand.vol);
+ ProcessVibrato(nChn, period, vibratoFactor);
+ }
+ }
+ // Plugins may also receive vibrato
+ ProcessVibrato(nChn, period, vibratoFactor);
+
+ if(samplePlaying)
+ {
+ int nPeriodFrac = 0;
+ ProcessSampleAutoVibrato(chn, period, vibratoFactor, nPeriodFrac);
+
+ // Final Period
+ // ST3 only clamps the final output period, but never the channel's internal period.
+ // Test case: PeriodLimit.s3m
+ if (period <= m_nMinPeriod)
+ {
+ if(m_playBehaviour[kST3LimitPeriod]) chn.nLength = 0; // Pattern 15 in watcha.s3m
+ period = m_nMinPeriod;
+ }
+
+ const bool hasTuning = chn.HasCustomTuning();
+ if(hasTuning)
+ {
+ if(chn.m_CalculateFreq || (chn.m_ReCalculateFreqOnFirstTick && m_PlayState.m_nTickCount == 0))
+ {
+ chn.RecalcTuningFreq(vibratoFactor, arpeggioSteps, *this);
+ if(!chn.m_CalculateFreq)
+ chn.m_ReCalculateFreqOnFirstTick = false;
+ else
+ chn.m_CalculateFreq = false;
+ }
+ }
+
+ auto [ninc, freq] = GetChannelIncrement(chn, period, nPeriodFrac);
+#ifndef MODPLUG_TRACKER
+ ninc.MulDiv(m_nFreqFactor, 65536);
+#endif // !MODPLUG_TRACKER
+ if(ninc.IsZero())
+ {
+ ninc.Set(0, 1);
+ }
+ chn.increment = ninc;
+
+ if((chn.dwFlags & (CHN_ADLIB | CHN_MUTE | CHN_SYNCMUTE)) == CHN_ADLIB && m_opl)
+ {
+ const bool doProcess = m_playBehaviour[kOPLFlexibleNoteOff] || !chn.dwFlags[CHN_NOTEFADE] || GetType() == MOD_TYPE_S3M;
+ if(doProcess && !(GetType() == MOD_TYPE_S3M && chn.dwFlags[CHN_KEYOFF]))
+ {
+ // In ST3, a sample rate of 8363 Hz is mapped to middle-C, which is 261.625 Hz in a tempered scale at A4 = 440.
+ // Hence, we have to translate our "sample rate" into pitch.
+ auto milliHertz = Util::muldivr_unsigned(freq, 261625, 8363 << FREQ_FRACBITS);
+
+ const bool keyOff = chn.dwFlags[CHN_KEYOFF] || (chn.dwFlags[CHN_NOTEFADE] && chn.nFadeOutVol == 0);
+ if(!m_playBehaviour[kOPLNoteStopWith0Hz] || !keyOff)
+ m_opl->Frequency(nChn, milliHertz, keyOff, m_playBehaviour[kOPLBeatingOscillators]);
+ }
+ if(doProcess)
+ {
+ // Scale volume to OPL range (0...63).
+ m_opl->Volume(nChn, static_cast<uint8>(Util::muldivr_unsigned(chn.nCalcVolume * chn.nGlobalVol * chn.nInsVol, 63, 1 << 26)), false);
+ chn.nRealPan = m_opl->Pan(nChn, chn.nRealPan) * 128 + 128;
+ }
+
+ // Deallocate OPL channels for notes that are most definitely never going to play again.
+ if(const auto *ins = chn.pModInstrument; ins != nullptr
+ && (ins->VolEnv.dwFlags & (ENV_ENABLED | ENV_LOOP | ENV_SUSTAIN)) == ENV_ENABLED
+ && !ins->VolEnv.empty()
+ && chn.GetEnvelope(ENV_VOLUME).nEnvPosition >= ins->VolEnv.back().tick
+ && ins->VolEnv.back().value == 0)
+ {
+ m_opl->NoteCut(nChn);
+ if(!m_playBehaviour[kOPLNoResetAtEnvelopeEnd])
+ chn.dwFlags.reset(CHN_ADLIB);
+ chn.dwFlags.set(CHN_NOTEFADE);
+ chn.nFadeOutVol = 0;
+ } else if(m_playBehaviour[kOPLFlexibleNoteOff] && chn.dwFlags[CHN_NOTEFADE] && chn.nFadeOutVol == 0)
+ {
+ m_opl->NoteCut(nChn);
+ chn.dwFlags.reset(CHN_ADLIB);
+ }
+ }
+ }
+
+ // Increment envelope positions
+ if(pIns != nullptr && !m_playBehaviour[kITEnvelopePositionHandling])
+ {
+ // In IT and FT2 compatible mode, envelope positions are updated above.
+ // Test cases: s77.it, EnvLoops.xm
+ IncrementEnvelopePositions(chn);
+ }
+
+ // Volume ramping
+ chn.dwFlags.set(CHN_VOLUMERAMP, (chn.nRealVolume | chn.rightVol | chn.leftVol) != 0 && !chn.dwFlags[CHN_ADLIB]);
+
+ constexpr uint8 VUMETER_DECAY = 4;
+ chn.nLeftVU = (chn.nLeftVU > VUMETER_DECAY) ? (chn.nLeftVU - VUMETER_DECAY) : 0;
+ chn.nRightVU = (chn.nRightVU > VUMETER_DECAY) ? (chn.nRightVU - VUMETER_DECAY) : 0;
+
+ chn.newLeftVol = chn.newRightVol = 0;
+ chn.pCurrentSample = (chn.pModSample && chn.pModSample->HasSampleData() && chn.nLength && chn.IsSamplePlaying()) ? chn.pModSample->samplev() : nullptr;
+ if(chn.pCurrentSample || (chn.HasMIDIOutput() && !chn.dwFlags[CHN_KEYOFF | CHN_NOTEFADE]))
+ {
+ // Update VU-Meter (nRealVolume is 14-bit)
+ uint32 vul = (chn.nRealVolume * (256-chn.nRealPan)) / (1 << 14);
+ if (vul > 127) vul = 127;
+ if (chn.nLeftVU > 127) chn.nLeftVU = (uint8)vul;
+ vul /= 2;
+ if (chn.nLeftVU < vul) chn.nLeftVU = (uint8)vul;
+ uint32 vur = (chn.nRealVolume * chn.nRealPan) / (1 << 14);
+ if (vur > 127) vur = 127;
+ if (chn.nRightVU > 127) chn.nRightVU = (uint8)vur;
+ vur /= 2;
+ if (chn.nRightVU < vur) chn.nRightVU = (uint8)vur;
+ } else
+ {
+ // Note change but no sample
+ if (chn.nLeftVU > 128) chn.nLeftVU = 0;
+ if (chn.nRightVU > 128) chn.nRightVU = 0;
+ }
+
+ if (chn.pCurrentSample)
+ {
+#ifdef MODPLUG_TRACKER
+ const uint32 kChnMasterVol = chn.dwFlags[CHN_EXTRALOUD] ? (uint32)m_PlayConfig.getNormalSamplePreAmp() : nMasterVol;
+#else
+ const uint32 kChnMasterVol = nMasterVol;
+#endif // MODPLUG_TRACKER
+
+ // Adjusting volumes
+ {
+ int32 pan = (m_MixerSettings.gnChannels >= 2) ? Clamp(chn.nRealPan, 0, 256) : 128;
+
+ int32 realvol;
+ if(m_PlayConfig.getUseGlobalPreAmp())
+ {
+ realvol = (chn.nRealVolume * kChnMasterVol) / 128;
+ } else
+ {
+ // Extra attenuation required here if we're bypassing pre-amp.
+ realvol = (chn.nRealVolume * kChnMasterVol) / 256;
+ }
+
+ const PanningMode panningMode = m_PlayConfig.getPanningMode();
+ if(panningMode == PanningMode::SoftPanning || (panningMode == PanningMode::Undetermined && (m_MixerSettings.MixerFlags & SNDMIX_SOFTPANNING)))
+ {
+ if(pan < 128)
+ {
+ chn.newLeftVol = (realvol * 128) / 256;
+ chn.newRightVol = (realvol * pan) / 256;
+ } else
+ {
+ chn.newLeftVol = (realvol * (256 - pan)) / 256;
+ chn.newRightVol = (realvol * 128) / 256;
+ }
+ } else if(panningMode == PanningMode::FT2Panning)
+ {
+ // FT2 uses square root panning. There is a 257-entry LUT for this,
+ // but FT2's internal panning ranges from 0 to 255 only, meaning that
+ // you can never truly achieve 100% right panning in FT2, only 100% left.
+ // Test case: FT2PanLaw.xm
+ LimitMax(pan, 255);
+ const int panL = pan > 0 ? XMPanningTable[256 - pan] : 65536;
+ const int panR = XMPanningTable[pan];
+ chn.newLeftVol = (realvol * panL) / 65536;
+ chn.newRightVol = (realvol * panR) / 65536;
+ } else
+ {
+ chn.newLeftVol = (realvol * (256 - pan)) / 256;
+ chn.newRightVol = (realvol * pan) / 256;
+ }
+ }
+ // Clipping volumes
+ //if (chn.nNewRightVol > 0xFFFF) chn.nNewRightVol = 0xFFFF;
+ //if (chn.nNewLeftVol > 0xFFFF) chn.nNewLeftVol = 0xFFFF;
+
+ if(chn.pModInstrument && Resampling::IsKnownMode(chn.pModInstrument->resampling))
+ {
+ // For defined resampling modes, use per-instrument resampling mode if set
+ chn.resamplingMode = chn.pModInstrument->resampling;
+ } else if(Resampling::IsKnownMode(m_nResampling))
+ {
+ chn.resamplingMode = m_nResampling;
+ } else if(m_SongFlags[SONG_ISAMIGA] && m_Resampler.m_Settings.emulateAmiga != Resampling::AmigaFilter::Off)
+ {
+ // Enforce Amiga resampler for Amiga modules
+ chn.resamplingMode = SRCMODE_AMIGA;
+ } else
+ {
+ // Default to global mixer settings
+ chn.resamplingMode = m_Resampler.m_Settings.SrcMode;
+ }
+
+ if(chn.increment.IsUnity() && !(chn.dwFlags[CHN_VIBRATO] || chn.nAutoVibDepth || chn.resamplingMode == SRCMODE_AMIGA))
+ {
+ // Exact sample rate match, do not interpolate at all
+ // - unless vibrato is applied, because in this case the constant enabling and disabling
+ // of resampling can introduce clicks (this is easily observable with a sine sample
+ // played at the mix rate).
+ chn.resamplingMode = SRCMODE_NEAREST;
+ }
+
+ const int extraAttenuation = m_PlayConfig.getExtraSampleAttenuation();
+ chn.newLeftVol /= (1 << extraAttenuation);
+ chn.newRightVol /= (1 << extraAttenuation);
+
+ // Dolby Pro-Logic Surround
+ if(chn.dwFlags[CHN_SURROUND] && m_MixerSettings.gnChannels == 2) chn.newRightVol = -chn.newRightVol;
+
+ // Checking Ping-Pong Loops
+ if(chn.dwFlags[CHN_PINGPONGFLAG]) chn.increment.Negate();
+
+ // Setting up volume ramp
+ ProcessRamping(chn);
+
+ // Adding the channel in the channel list
+ if(!chn.dwFlags[CHN_ADLIB])
+ {
+ m_PlayState.ChnMix[m_nMixChannels++] = nChn;
+ }
+ } else
+ {
+ chn.rightVol = chn.leftVol = 0;
+ chn.nLength = 0;
+ // Put the channel back into the mixer for end-of-sample pop reduction
+ if(chn.nLOfs || chn.nROfs)
+ m_PlayState.ChnMix[m_nMixChannels++] = nChn;
+ }
+
+ chn.dwOldFlags = chn.dwFlags;
+ }
+
+ // If there are more channels being mixed than allowed, order them by volume and discard the most quiet ones
+ if(m_nMixChannels >= m_MixerSettings.m_nMaxMixChannels)
+ {
+ std::partial_sort(std::begin(m_PlayState.ChnMix), std::begin(m_PlayState.ChnMix) + m_MixerSettings.m_nMaxMixChannels, std::begin(m_PlayState.ChnMix) + m_nMixChannels,
+ [this](CHANNELINDEX i, CHANNELINDEX j) { return (m_PlayState.Chn[i].nRealVolume > m_PlayState.Chn[j].nRealVolume); });
+ }
+ return true;
+}
+
+
+void CSoundFile::ProcessMacroOnChannel(CHANNELINDEX nChn)
+{
+ ModChannel &chn = m_PlayState.Chn[nChn];
+ if(nChn < GetNumChannels())
+ {
+ // TODO evaluate per-plugin macros here
+ //ProcessMIDIMacro(m_PlayState, nChn, false, m_MidiCfg.Global[MIDIOUT_PAN]);
+ //ProcessMIDIMacro(m_PlayState, nChn, false, m_MidiCfg.Global[MIDIOUT_VOLUME]);
+
+ if((chn.rowCommand.command == CMD_MIDI && m_SongFlags[SONG_FIRSTTICK]) || chn.rowCommand.command == CMD_SMOOTHMIDI)
+ {
+ if(chn.rowCommand.param < 0x80)
+ ProcessMIDIMacro(m_PlayState, nChn, (chn.rowCommand.command == CMD_SMOOTHMIDI), m_MidiCfg.SFx[chn.nActiveMacro], chn.rowCommand.param);
+ else
+ ProcessMIDIMacro(m_PlayState, nChn, (chn.rowCommand.command == CMD_SMOOTHMIDI), m_MidiCfg.Zxx[chn.rowCommand.param & 0x7F], chn.rowCommand.param);
+ }
+ }
+}
+
+
+#ifndef NO_PLUGINS
+
+void CSoundFile::ProcessMidiOut(CHANNELINDEX nChn)
+{
+ ModChannel &chn = m_PlayState.Chn[nChn];
+
+ // Do we need to process MIDI?
+ // For now there is no difference between mute and sync mute with VSTis.
+ if(chn.dwFlags[CHN_MUTE | CHN_SYNCMUTE] || !chn.HasMIDIOutput()) return;
+
+ // Get instrument info and plugin reference
+ const ModInstrument *pIns = chn.pModInstrument; // Can't be nullptr at this point, as we have valid MIDI output.
+
+ // No instrument or muted instrument?
+ if(pIns->dwFlags[INS_MUTE])
+ {
+ return;
+ }
+
+ // Check instrument plugins
+ const PLUGINDEX nPlugin = GetBestPlugin(m_PlayState, nChn, PrioritiseInstrument, RespectMutes);
+ IMixPlugin *pPlugin = nullptr;
+ if(nPlugin > 0 && nPlugin <= MAX_MIXPLUGINS)
+ {
+ pPlugin = m_MixPlugins[nPlugin - 1].pMixPlugin;
+ }
+
+ // Couldn't find a valid plugin
+ if(pPlugin == nullptr) return;
+
+ const ModCommand::NOTE note = chn.rowCommand.note;
+ // Check for volume commands
+ uint8 vol = 0xFF;
+ if(chn.rowCommand.volcmd == VOLCMD_VOLUME)
+ {
+ vol = std::min(chn.rowCommand.vol, uint8(64));
+ } else if(chn.rowCommand.command == CMD_VOLUME)
+ {
+ vol = std::min(chn.rowCommand.param, uint8(64));
+ }
+ const bool hasVolCommand = (vol != 0xFF);
+
+ if(m_playBehaviour[kMIDICCBugEmulation])
+ {
+ if(note != NOTE_NONE)
+ {
+ ModCommand::NOTE realNote = note;
+ if(ModCommand::IsNote(note))
+ realNote = pIns->NoteMap[note - NOTE_MIN];
+ SendMIDINote(nChn, realNote, static_cast<uint16>(chn.nVolume));
+ } else if(hasVolCommand)
+ {
+ pPlugin->MidiCC(MIDIEvents::MIDICC_Volume_Fine, vol, nChn);
+ }
+ return;
+ }
+
+ const uint32 defaultVolume = pIns->nGlobalVol;
+
+ //If new note, determine notevelocity to use.
+ if(note != NOTE_NONE)
+ {
+ int32 velocity = static_cast<int32>(4 * defaultVolume);
+ switch(pIns->pluginVelocityHandling)
+ {
+ case PLUGIN_VELOCITYHANDLING_CHANNEL:
+ velocity = chn.nVolume;
+ break;
+ default:
+ break;
+ }
+
+ int32 swing = chn.nVolSwing;
+ if(m_playBehaviour[kITSwingBehaviour]) swing *= 4;
+ velocity += swing;
+ Limit(velocity, 0, 256);
+
+ ModCommand::NOTE realNote = note;
+ if(ModCommand::IsNote(note))
+ realNote = pIns->NoteMap[note - NOTE_MIN];
+ // Experimental VST panning
+ //ProcessMIDIMacro(nChn, false, m_MidiCfg.Global[MIDIOUT_PAN], 0, nPlugin);
+ SendMIDINote(nChn, realNote, static_cast<uint16>(velocity));
+ }
+
+ const bool processVolumeAlsoOnNote = (pIns->pluginVelocityHandling == PLUGIN_VELOCITYHANDLING_VOLUME);
+ const bool hasNote = m_playBehaviour[kMIDIVolumeOnNoteOffBug] ? (note != NOTE_NONE) : ModCommand::IsNote(note);
+
+ if((hasVolCommand && !hasNote) || (hasNote && processVolumeAlsoOnNote))
+ {
+ switch(pIns->pluginVolumeHandling)
+ {
+ case PLUGIN_VOLUMEHANDLING_DRYWET:
+ if(hasVolCommand) pPlugin->SetDryRatio(1.0f - (2 * vol) / 127.0f);
+ else pPlugin->SetDryRatio(1.0f - (2 * defaultVolume) / 127.0f);
+ break;
+ case PLUGIN_VOLUMEHANDLING_MIDI:
+ if(hasVolCommand) pPlugin->MidiCC(MIDIEvents::MIDICC_Volume_Coarse, std::min(uint8(127), static_cast<uint8>(2 * vol)), nChn);
+ else pPlugin->MidiCC(MIDIEvents::MIDICC_Volume_Coarse, static_cast<uint8>(std::min(uint32(127), static_cast<uint32>(2 * defaultVolume))), nChn);
+ break;
+ default:
+ break;
+ }
+ }
+}
+
+#endif // NO_PLUGINS
+
+
+template<int channels>
+MPT_FORCEINLINE void ApplyGlobalVolumeWithRamping(int32 *SoundBuffer, int32 *RearBuffer, int32 lCount, int32 m_nGlobalVolume, int32 step, int32 &m_nSamplesToGlobalVolRampDest, int32 &m_lHighResRampingGlobalVolume)
+{
+ const bool isStereo = (channels >= 2);
+ const bool hasRear = (channels >= 4);
+ for(int pos = 0; pos < lCount; ++pos)
+ {
+ if(m_nSamplesToGlobalVolRampDest > 0)
+ {
+ // Ramping required
+ m_lHighResRampingGlobalVolume += step;
+ SoundBuffer[0] = Util::muldiv(SoundBuffer[0], m_lHighResRampingGlobalVolume, MAX_GLOBAL_VOLUME << VOLUMERAMPPRECISION);
+ if constexpr(isStereo) SoundBuffer[1] = Util::muldiv(SoundBuffer[1], m_lHighResRampingGlobalVolume, MAX_GLOBAL_VOLUME << VOLUMERAMPPRECISION);
+ if constexpr(hasRear) RearBuffer[0] = Util::muldiv(RearBuffer[0] , m_lHighResRampingGlobalVolume, MAX_GLOBAL_VOLUME << VOLUMERAMPPRECISION); else MPT_UNUSED_VARIABLE(RearBuffer);
+ if constexpr(hasRear) RearBuffer[1] = Util::muldiv(RearBuffer[1] , m_lHighResRampingGlobalVolume, MAX_GLOBAL_VOLUME << VOLUMERAMPPRECISION); else MPT_UNUSED_VARIABLE(RearBuffer);
+ m_nSamplesToGlobalVolRampDest--;
+ } else
+ {
+ SoundBuffer[0] = Util::muldiv(SoundBuffer[0], m_nGlobalVolume, MAX_GLOBAL_VOLUME);
+ if constexpr(isStereo) SoundBuffer[1] = Util::muldiv(SoundBuffer[1], m_nGlobalVolume, MAX_GLOBAL_VOLUME);
+ if constexpr(hasRear) RearBuffer[0] = Util::muldiv(RearBuffer[0] , m_nGlobalVolume, MAX_GLOBAL_VOLUME); else MPT_UNUSED_VARIABLE(RearBuffer);
+ if constexpr(hasRear) RearBuffer[1] = Util::muldiv(RearBuffer[1] , m_nGlobalVolume, MAX_GLOBAL_VOLUME); else MPT_UNUSED_VARIABLE(RearBuffer);
+ m_lHighResRampingGlobalVolume = m_nGlobalVolume << VOLUMERAMPPRECISION;
+ }
+ SoundBuffer += isStereo ? 2 : 1;
+ if constexpr(hasRear) RearBuffer += 2;
+ }
+}
+
+
+void CSoundFile::ProcessGlobalVolume(long lCount)
+{
+
+ // should we ramp?
+ if(IsGlobalVolumeUnset())
+ {
+ // do not ramp if no global volume was set before (which is the case at song start), to prevent audible glitches when default volume is > 0 and it is set to 0 in the first row
+ m_PlayState.m_nGlobalVolumeDestination = m_PlayState.m_nGlobalVolume;
+ m_PlayState.m_nSamplesToGlobalVolRampDest = 0;
+ m_PlayState.m_nGlobalVolumeRampAmount = 0;
+ } else if(m_PlayState.m_nGlobalVolumeDestination != m_PlayState.m_nGlobalVolume)
+ {
+ // User has provided new global volume
+
+ // m_nGlobalVolume: the last global volume which got set e.g. by a pattern command
+ // m_nGlobalVolumeDestination: the current target of the ramping algorithm
+ const bool rampUp = m_PlayState.m_nGlobalVolume > m_PlayState.m_nGlobalVolumeDestination;
+
+ m_PlayState.m_nGlobalVolumeDestination = m_PlayState.m_nGlobalVolume;
+ m_PlayState.m_nSamplesToGlobalVolRampDest = m_PlayState.m_nGlobalVolumeRampAmount = rampUp ? m_MixerSettings.GetVolumeRampUpSamples() : m_MixerSettings.GetVolumeRampDownSamples();
+ }
+
+ // calculate ramping step
+ int32 step = 0;
+ if (m_PlayState.m_nSamplesToGlobalVolRampDest > 0)
+ {
+
+ // Still some ramping left to do.
+ int32 highResGlobalVolumeDestination = static_cast<int32>(m_PlayState.m_nGlobalVolumeDestination) << VOLUMERAMPPRECISION;
+
+ const long delta = highResGlobalVolumeDestination - m_PlayState.m_lHighResRampingGlobalVolume;
+ step = delta / static_cast<long>(m_PlayState.m_nSamplesToGlobalVolRampDest);
+
+ if(m_nMixLevels == MixLevels::v1_17RC2)
+ {
+ // Define max step size as some factor of user defined ramping value: the lower the value, the more likely the click.
+ // If step is too big (might cause click), extend ramp length.
+ // Warning: This increases the volume ramp length by EXTREME amounts (factors of 100 are easily reachable)
+ // compared to the user-defined setting, so this really should not be used!
+ int32 maxStep = std::max(int32(50), static_cast<int32>((10000 / (m_PlayState.m_nGlobalVolumeRampAmount + 1))));
+ while(std::abs(step) > maxStep)
+ {
+ m_PlayState.m_nSamplesToGlobalVolRampDest += m_PlayState.m_nGlobalVolumeRampAmount;
+ step = delta / static_cast<int32>(m_PlayState.m_nSamplesToGlobalVolRampDest);
+ }
+ }
+ }
+
+ // apply volume and ramping
+ if(m_MixerSettings.gnChannels == 1)
+ {
+ ApplyGlobalVolumeWithRamping<1>(MixSoundBuffer, MixRearBuffer, lCount, m_PlayState.m_nGlobalVolume, step, m_PlayState.m_nSamplesToGlobalVolRampDest, m_PlayState.m_lHighResRampingGlobalVolume);
+ } else if(m_MixerSettings.gnChannels == 2)
+ {
+ ApplyGlobalVolumeWithRamping<2>(MixSoundBuffer, MixRearBuffer, lCount, m_PlayState.m_nGlobalVolume, step, m_PlayState.m_nSamplesToGlobalVolRampDest, m_PlayState.m_lHighResRampingGlobalVolume);
+ } else if(m_MixerSettings.gnChannels == 4)
+ {
+ ApplyGlobalVolumeWithRamping<4>(MixSoundBuffer, MixRearBuffer, lCount, m_PlayState.m_nGlobalVolume, step, m_PlayState.m_nSamplesToGlobalVolRampDest, m_PlayState.m_lHighResRampingGlobalVolume);
+ }
+
+}
+
+
+void CSoundFile::ProcessStereoSeparation(long countChunk)
+{
+ ApplyStereoSeparation(MixSoundBuffer, MixRearBuffer, m_MixerSettings.gnChannels, countChunk, m_MixerSettings.m_nStereoSeparation);
+}
+
+
+OPENMPT_NAMESPACE_END