aboutsummaryrefslogtreecommitdiff
path: root/Src/external_dependencies/openmpt-trunk/soundlib/TinyFFT.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Src/external_dependencies/openmpt-trunk/soundlib/TinyFFT.cpp')
-rw-r--r--Src/external_dependencies/openmpt-trunk/soundlib/TinyFFT.cpp154
1 files changed, 154 insertions, 0 deletions
diff --git a/Src/external_dependencies/openmpt-trunk/soundlib/TinyFFT.cpp b/Src/external_dependencies/openmpt-trunk/soundlib/TinyFFT.cpp
new file mode 100644
index 00000000..2aa709da
--- /dev/null
+++ b/Src/external_dependencies/openmpt-trunk/soundlib/TinyFFT.cpp
@@ -0,0 +1,154 @@
+/*
+ * TinyFFT.cpp
+ * -----------
+ * Purpose: A simple FFT implementation for power-of-two FFTs
+ * Notes : This is a C++ adaption of Ryuhei Mori's BSD 2-clause licensed TinyFFT
+ * available from https://github.com/ryuhei-mori/tinyfft
+ * Authors: Ryuhei Mori
+ * OpenMPT Devs
+ * The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
+ */
+
+
+#include "stdafx.h"
+#include "TinyFFT.h"
+
+OPENMPT_NAMESPACE_BEGIN
+
+void TinyFFT::GenerateTwiddleFactors(uint32 i, uint32 b, std::complex<double> z)
+{
+ if(b == 0)
+ w[i] = z;
+ else
+ {
+ GenerateTwiddleFactors(i, b >> 1, z);
+ GenerateTwiddleFactors(i | b, b >> 1, z * w[b]);
+ }
+}
+
+
+TinyFFT::TinyFFT(const uint32 fftSize)
+ : w(std::size_t(1) << (fftSize - 1))
+ , k(fftSize)
+{
+ const uint32 m = 1 << k;
+ constexpr double PI2_ = 6.28318530717958647692;
+ const double arg = -PI2_ / m;
+ for(uint32 i = 1, j = m / 4; j; i <<= 1, j >>= 1)
+ {
+ w[i] = std::exp(I * (arg * j));
+ }
+ GenerateTwiddleFactors(0, m / 4, 1);
+}
+
+
+uint32 TinyFFT::Size() const noexcept
+{
+ return 1 << k;
+}
+
+
+// Computes in-place FFT of size 2^k of A, result is in bit-reversed order.
+void TinyFFT::FFT(std::vector<std::complex<double>> &A) const
+{
+ MPT_ASSERT(A.size() == (std::size_t(1) << k));
+ const uint32 m = 1 << k;
+ uint32 u = 1;
+ uint32 v = m / 4;
+ if(k & 1)
+ {
+ for(uint32 j = 0; j < m / 2; j++)
+ {
+ auto Ajv = A[j + (m / 2)];
+ A[j + (m / 2)] = A[j] - Ajv;
+ A[j] += Ajv;
+ }
+ u <<= 1;
+ v >>= 1;
+ }
+ for(uint32 i = k & ~1; i > 0; i -= 2)
+ {
+ for(uint32 jh = 0; jh < u; jh++)
+ {
+ auto wj = w[jh << 1];
+ auto wj2 = w[jh];
+ auto wj3 = wj2 * wj;
+ for(uint32 j = jh << i, je = j + v; j < je; j++)
+ {
+ auto tmp0 = A[j];
+ auto tmp1 = wj * A[j + v];
+ auto tmp2 = wj2 * A[j + 2 * v];
+ auto tmp3 = wj3 * A[j + 3 * v];
+
+ auto ttmp0 = tmp0 + tmp2;
+ auto ttmp2 = tmp0 - tmp2;
+ auto ttmp1 = tmp1 + tmp3;
+ auto ttmp3 = -I * (tmp1 - tmp3);
+
+ A[j] = ttmp0 + ttmp1;
+ A[j + v] = ttmp0 - ttmp1;
+ A[j + 2 * v] = ttmp2 + ttmp3;
+ A[j + 3 * v] = ttmp2 - ttmp3;
+ }
+ }
+ u <<= 2;
+ v >>= 2;
+ }
+}
+
+
+// Computes in-place IFFT of size 2^k of A, input is expected to be in bit-reversed order.
+void TinyFFT::IFFT(std::vector<std::complex<double>> &A) const
+{
+ MPT_ASSERT(A.size() == (std::size_t(1) << k));
+ const uint32 m = 1 << k;
+ uint32 u = m / 4;
+ uint32 v = 1;
+ for(uint32 i = 2; i <= k; i += 2)
+ {
+ for(uint32 jh = 0; jh < u; jh++)
+ {
+ auto wj = std::conj(w[jh << 1]);
+ auto wj2 = std::conj(w[jh]);
+ auto wj3 = wj2 * wj;
+ for(uint32 j = jh << i, je = j + v; j < je; j++)
+ {
+ auto tmp0 = A[j];
+ auto tmp1 = A[j + v];
+ auto tmp2 = A[j + 2 * v];
+ auto tmp3 = A[j + 3 * v];
+
+ auto ttmp0 = tmp0 + tmp1;
+ auto ttmp1 = tmp0 - tmp1;
+ auto ttmp2 = tmp2 + tmp3;
+ auto ttmp3 = I * (tmp2 - tmp3);
+
+ A[j] = ttmp0 + ttmp2;
+ A[j + v] = wj * (ttmp1 + ttmp3);
+ A[j + 2 * v] = wj2 * (ttmp0 - ttmp2);
+ A[j + 3 * v] = wj3 * (ttmp1 - ttmp3);
+ }
+ }
+ u >>= 2;
+ v <<= 2;
+ }
+ if(k & 1)
+ {
+ for(uint32 j = 0; j < m / 2; j++)
+ {
+ auto Ajv = A[j + (m / 2)];
+ A[j + (m / 2)] = A[j] - Ajv;
+ A[j] += Ajv;
+ }
+ }
+}
+
+
+void TinyFFT::Normalize(std::vector<std::complex<double>> &data)
+{
+ const double s = static_cast<double>(data.size());
+ for(auto &v : data)
+ v /= s;
+}
+
+OPENMPT_NAMESPACE_END