1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
/* Copyright (C) Teemu Suutari */
#ifndef DYNAMICHUFFMANDECODER_HPP
#define DYNAMICHUFFMANDECODER_HPP
#include <cstddef>
#include <cstdint>
// For exception
#include "Decompressor.hpp"
namespace ancient::internal
{
template<uint32_t maxCount>
class DynamicHuffmanDecoder
{
public:
DynamicHuffmanDecoder(uint32_t initialCount=maxCount) :
_initialCount(initialCount)
{
if (_initialCount>maxCount) throw Decompressor::DecompressionError();
reset();
}
~DynamicHuffmanDecoder()
{
// nothing needed
}
void reset()
{
_count=_initialCount;
if (!_count) return;
for (uint32_t i=0;i<_count;i++)
{
_nodes[i].frequency=1;
_nodes[i].index=i+(maxCount-_count)*2;
_nodes[i].parent=maxCount*2-_count+(i>>1);
_nodes[i].leaves[0]=0;
_nodes[i].leaves[1]=0;
_codeMap[i+(maxCount-_count)*2]=i;
}
for (uint32_t i=maxCount*2-_count,j=0;i<maxCount*2-1;i++,j+=2)
{
uint32_t l=(j>=_count)?j+(maxCount-_count)*2:j;
uint32_t r=(j+1>=_count)?j+1+(maxCount-_count)*2:(j+1);
_nodes[i].frequency=_nodes[l].frequency+_nodes[r].frequency;
_nodes[i].index=i;
_nodes[i].parent=maxCount+(i>>1);
_nodes[i].leaves[0]=l;
_nodes[i].leaves[1]=r;
_codeMap[i]=i;
}
}
template<typename F>
uint32_t decode(F bitReader) const
{
if (!_count) throw Decompressor::DecompressionError();
if (_count==1) return 0;
uint32_t code=maxCount*2-2;
while (code>=maxCount)
code=_nodes[code].leaves[bitReader()?1:0];
return code;
}
void update(uint32_t code)
{
if (code>=_count) throw Decompressor::DecompressionError();
// this is a bug in LH2. Nobody else uses this codepath, so we can let it be...
if (_count==1)
{
_nodes[0].frequency=1;
return;
}
while (code!=maxCount*2-2)
{
_nodes[code].frequency++;
uint32_t index=_nodes[code].index;
uint32_t destIndex=index;
uint32_t freq=_nodes[code].frequency;
while (destIndex!=maxCount*2-2 && freq>_nodes[_codeMap[destIndex+1]].frequency) destIndex++;
if (index!=destIndex)
{
auto getParentLeaf=[&](uint32_t currentCode)->uint32_t&
{
Node &parent=_nodes[_nodes[currentCode].parent];
return parent.leaves[(parent.leaves[0]==currentCode)?0:1];
};
uint32_t destCode=_codeMap[destIndex];
std::swap(_nodes[code].index,_nodes[destCode].index);
std::swap(_codeMap[index],_codeMap[destIndex]);
std::swap(getParentLeaf(code),getParentLeaf(destCode));
std::swap(_nodes[code].parent,_nodes[destCode].parent);
}
code=_nodes[code].parent;
}
_nodes[code].frequency++;
}
// halve the frequencies rounding upwards
void halve()
{
if (!_count) return;
else if (_count==1)
{
_nodes[0].frequency=(_nodes[0].frequency+1)>>1;
return;
}
for (uint32_t i=(maxCount-_count)*2,j=(maxCount-_count)*2;i<maxCount*2-1&&j<maxCount*2-_count;i++)
if (_codeMap[i]<maxCount) _nodes[_codeMap[i]].index=j++;
for (uint32_t i=0;i<_count;i++)
{
_nodes[i].frequency=(_nodes[i].frequency+1)>>1;
_nodes[i].parent=maxCount+(_nodes[i].index>>1);
_codeMap[_nodes[i].index]=i;
}
for (uint32_t i=maxCount*2-_count,j=(maxCount-_count)*2;i<maxCount*2-1;i++,j+=2)
{
uint32_t l=_codeMap[j];
uint32_t r=_codeMap[j+1];
uint32_t freq=_nodes[l].frequency+_nodes[r].frequency;
_nodes[i].frequency=freq;
_nodes[i].index=i;
_nodes[i].parent=maxCount+(i>>1);
_nodes[i].leaves[0]=l;
_nodes[i].leaves[1]=r;
_codeMap[i]=i;
for (uint32_t k=i;freq<_nodes[_codeMap[k-1]].frequency;k--)
{
uint32_t &code=_codeMap[k];
uint32_t &destCode=_codeMap[k-1];
std::swap(_nodes[code].index,_nodes[destCode].index);
std::swap(_nodes[code].parent,_nodes[destCode].parent);
std::swap(code,destCode);
}
}
}
// Defined as in LH2
void addCode()
{
if (_count>=maxCount) throw Decompressor::DecompressionError();
uint32_t newIndex=(maxCount-_count-1)*2;
if (!_count)
{
_nodes[0].frequency=0;
_nodes[0].index=newIndex-1;
_nodes[0].parent=maxCount*2-2;
_nodes[0].leaves[0]=0;
_nodes[0].leaves[1]=0;
_codeMap[newIndex-1]=0;
_count++;
} else {
_nodes[_count].frequency=0;
_nodes[_count].index=newIndex;
_nodes[_count].parent=maxCount*2-_count-1;
_nodes[_count].leaves[0]=0;
_nodes[_count].leaves[1]=0;
_codeMap[newIndex]=_count;
uint32_t insertIndex=newIndex+2;
uint32_t repNode;
uint32_t parentNode;
uint32_t insertNode=maxCount*2-_count-1;
if (_count>1)
{
_codeMap[insertIndex-1]=_codeMap[insertIndex];
_nodes[_codeMap[insertIndex-1]].index--;
repNode=_codeMap[(maxCount-_count)*2];
parentNode=_nodes[repNode].parent;
_nodes[parentNode].leaves[(_nodes[parentNode].leaves[0]==repNode)?0:1]=insertNode;
_nodes[repNode].parent=insertNode;
} else {
repNode=0;
parentNode=maxCount*2-1;
}
_nodes[insertNode].frequency=_nodes[repNode].frequency;
_nodes[insertNode].index=insertIndex;
_nodes[insertNode].parent=parentNode;
_nodes[insertNode].leaves[0]=_count;
_nodes[insertNode].leaves[1]=repNode;
_codeMap[insertIndex]=insertNode;
Node &parent=_nodes[parentNode];
if (_count>1 && _nodes[parent.leaves[0]].index>_nodes[parent.leaves[1]].index)
std::swap(parent.leaves[0],parent.leaves[1]);
_count++;
}
}
uint32_t getMaxFrequency() const
{
return _nodes[maxCount*2-2].frequency;
}
private:
struct Node
{
uint32_t frequency;
uint32_t index;
uint32_t parent;
uint32_t leaves[2];
};
uint32_t _initialCount;
uint32_t _count;
Node _nodes[maxCount*2-1];
uint32_t _codeMap[maxCount*2-1];
};
}
#endif
|