1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
|
/*
* MP3 bitstream Output interface for LAME
*
* Copyright (c) 1999-2000 Mark Taylor
* Copyright (c) 1999-2002 Takehiro Tominaga
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*
* $Id: bitstream.c,v 1.99 2017/08/31 14:14:46 robert Exp $
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include "lame.h"
#include "machine.h"
#include "encoder.h"
#include "util.h"
#include "tables.h"
#include "quantize_pvt.h"
#include "lame_global_flags.h"
#include "gain_analysis.h"
#include "VbrTag.h"
#include "bitstream.h"
#include "tables.h"
/* unsigned int is at least this large: */
/* we work with ints, so when doing bit manipulation, we limit
* ourselves to MAX_LENGTH-2 just to be on the safe side */
#define MAX_LENGTH 32
#ifdef DEBUG
static int hogege;
#endif
static int
calcFrameLength(SessionConfig_t const *const cfg, int kbps, int pad)
{
return 8 * ((cfg->version + 1) * 72000 * kbps / cfg->samplerate_out + pad);
}
/***********************************************************************
* compute bitsperframe and mean_bits for a layer III frame
**********************************************************************/
int
getframebits(const lame_internal_flags * gfc)
{
SessionConfig_t const *const cfg = &gfc->cfg;
EncResult_t const *const eov = &gfc->ov_enc;
int bit_rate;
/* get bitrate in kbps [?] */
if (eov->bitrate_index)
bit_rate = bitrate_table[cfg->version][eov->bitrate_index];
else
bit_rate = cfg->avg_bitrate;
/*assert(bit_rate <= 550); */
assert(8 <= bit_rate && bit_rate <= 640);
/* main encoding routine toggles padding on and off */
/* one Layer3 Slot consists of 8 bits */
return calcFrameLength(cfg, bit_rate, eov->padding);
}
int
get_max_frame_buffer_size_by_constraint(SessionConfig_t const * cfg, int constraint)
{
int maxmp3buf = 0;
if (cfg->avg_bitrate > 320) {
/* in freeformat the buffer is constant */
if (constraint == MDB_STRICT_ISO) {
maxmp3buf = calcFrameLength(cfg, cfg->avg_bitrate, 0);
}
else {
/* maximum allowed bits per granule are 7680 */
maxmp3buf = 7680 * (cfg->version + 1);
}
}
else {
int max_kbps;
if (cfg->samplerate_out < 16000) {
max_kbps = bitrate_table[cfg->version][8]; /* default: allow 64 kbps (MPEG-2.5) */
}
else {
max_kbps = bitrate_table[cfg->version][14];
}
switch (constraint)
{
default:
case MDB_DEFAULT:
/* Bouvigne suggests this more lax interpretation of the ISO doc instead of using 8*960. */
/* All mp3 decoders should have enough buffer to handle this value: size of a 320kbps 32kHz frame */
maxmp3buf = 8 * 1440;
break;
case MDB_STRICT_ISO:
maxmp3buf = calcFrameLength(cfg, max_kbps, 0);
break;
case MDB_MAXIMUM:
maxmp3buf = 7680 * (cfg->version + 1);
break;
}
}
return maxmp3buf;
}
static void
putheader_bits(lame_internal_flags * gfc)
{
SessionConfig_t const *const cfg = &gfc->cfg;
EncStateVar_t *const esv = &gfc->sv_enc;
Bit_stream_struc *bs = &gfc->bs;
#ifdef DEBUG
hogege += cfg->sideinfo_len * 8;
#endif
memcpy(&bs->buf[bs->buf_byte_idx], esv->header[esv->w_ptr].buf, cfg->sideinfo_len);
bs->buf_byte_idx += cfg->sideinfo_len;
bs->totbit += cfg->sideinfo_len * 8;
esv->w_ptr = (esv->w_ptr + 1) & (MAX_HEADER_BUF - 1);
}
/*write j bits into the bit stream */
inline static void
putbits2(lame_internal_flags * gfc, int val, int j)
{
EncStateVar_t const *const esv = &gfc->sv_enc;
Bit_stream_struc *bs;
bs = &gfc->bs;
assert(j < MAX_LENGTH - 2);
while (j > 0) {
int k;
if (bs->buf_bit_idx == 0) {
bs->buf_bit_idx = 8;
bs->buf_byte_idx++;
assert(bs->buf_byte_idx < BUFFER_SIZE);
assert(esv->header[esv->w_ptr].write_timing >= bs->totbit);
if (esv->header[esv->w_ptr].write_timing == bs->totbit) {
putheader_bits(gfc);
}
bs->buf[bs->buf_byte_idx] = 0;
}
k = Min(j, bs->buf_bit_idx);
j -= k;
bs->buf_bit_idx -= k;
assert(j < MAX_LENGTH); /* 32 too large on 32 bit machines */
assert(bs->buf_bit_idx < MAX_LENGTH);
bs->buf[bs->buf_byte_idx] |= ((val >> j) << bs->buf_bit_idx);
bs->totbit += k;
}
}
/*write j bits into the bit stream, ignoring frame headers */
inline static void
putbits_noheaders(lame_internal_flags * gfc, int val, int j)
{
Bit_stream_struc *bs;
bs = &gfc->bs;
assert(j < MAX_LENGTH - 2);
while (j > 0) {
int k;
if (bs->buf_bit_idx == 0) {
bs->buf_bit_idx = 8;
bs->buf_byte_idx++;
assert(bs->buf_byte_idx < BUFFER_SIZE);
bs->buf[bs->buf_byte_idx] = 0;
}
k = Min(j, bs->buf_bit_idx);
j -= k;
bs->buf_bit_idx -= k;
assert(j < MAX_LENGTH); /* 32 too large on 32 bit machines */
assert(bs->buf_bit_idx < MAX_LENGTH);
bs->buf[bs->buf_byte_idx] |= ((val >> j) << bs->buf_bit_idx);
bs->totbit += k;
}
}
/*
Some combinations of bitrate, Fs, and stereo make it impossible to stuff
out a frame using just main_data, due to the limited number of bits to
indicate main_data_length. In these situations, we put stuffing bits into
the ancillary data...
*/
inline static void
drain_into_ancillary(lame_internal_flags * gfc, int remainingBits)
{
SessionConfig_t const *const cfg = &gfc->cfg;
EncStateVar_t *const esv = &gfc->sv_enc;
int i;
assert(remainingBits >= 0);
if (remainingBits >= 8) {
putbits2(gfc, 0x4c, 8);
remainingBits -= 8;
}
if (remainingBits >= 8) {
putbits2(gfc, 0x41, 8);
remainingBits -= 8;
}
if (remainingBits >= 8) {
putbits2(gfc, 0x4d, 8);
remainingBits -= 8;
}
if (remainingBits >= 8) {
putbits2(gfc, 0x45, 8);
remainingBits -= 8;
}
if (remainingBits >= 32) {
const char *const version = get_lame_short_version();
if (remainingBits >= 32)
for (i = 0; i < (int) strlen(version) && remainingBits >= 8; ++i) {
remainingBits -= 8;
putbits2(gfc, version[i], 8);
}
}
for (; remainingBits >= 1; remainingBits -= 1) {
putbits2(gfc, esv->ancillary_flag, 1);
esv->ancillary_flag ^= !cfg->disable_reservoir;
}
assert(remainingBits == 0);
}
/*write N bits into the header */
inline static void
writeheader(lame_internal_flags * gfc, int val, int j)
{
EncStateVar_t *const esv = &gfc->sv_enc;
int ptr = esv->header[esv->h_ptr].ptr;
while (j > 0) {
int const k = Min(j, 8 - (ptr & 7));
j -= k;
assert(j < MAX_LENGTH); /* >> 32 too large for 32 bit machines */
esv->header[esv->h_ptr].buf[ptr >> 3]
|= ((val >> j)) << (8 - (ptr & 7) - k);
ptr += k;
}
esv->header[esv->h_ptr].ptr = ptr;
}
static int
CRC_update(int value, int crc)
{
int i;
value <<= 8;
for (i = 0; i < 8; i++) {
value <<= 1;
crc <<= 1;
if (((crc ^ value) & 0x10000))
crc ^= CRC16_POLYNOMIAL;
}
return crc;
}
void
CRC_writeheader(lame_internal_flags const *gfc, char *header)
{
SessionConfig_t const *const cfg = &gfc->cfg;
int crc = 0xffff; /* (jo) init crc16 for error_protection */
int i;
crc = CRC_update(((unsigned char *) header)[2], crc);
crc = CRC_update(((unsigned char *) header)[3], crc);
for (i = 6; i < cfg->sideinfo_len; i++) {
crc = CRC_update(((unsigned char *) header)[i], crc);
}
header[4] = crc >> 8;
header[5] = crc & 255;
}
inline static void
encodeSideInfo2(lame_internal_flags * gfc, int bitsPerFrame)
{
SessionConfig_t const *const cfg = &gfc->cfg;
EncResult_t const *const eov = &gfc->ov_enc;
EncStateVar_t *const esv = &gfc->sv_enc;
III_side_info_t *l3_side;
int gr, ch;
l3_side = &gfc->l3_side;
esv->header[esv->h_ptr].ptr = 0;
memset(esv->header[esv->h_ptr].buf, 0, cfg->sideinfo_len);
if (cfg->samplerate_out < 16000)
writeheader(gfc, 0xffe, 12);
else
writeheader(gfc, 0xfff, 12);
writeheader(gfc, (cfg->version), 1);
writeheader(gfc, 4 - 3, 2);
writeheader(gfc, (!cfg->error_protection), 1);
writeheader(gfc, (eov->bitrate_index), 4);
writeheader(gfc, (cfg->samplerate_index), 2);
writeheader(gfc, (eov->padding), 1);
writeheader(gfc, (cfg->extension), 1);
writeheader(gfc, (cfg->mode), 2);
writeheader(gfc, (eov->mode_ext), 2);
writeheader(gfc, (cfg->copyright), 1);
writeheader(gfc, (cfg->original), 1);
writeheader(gfc, (cfg->emphasis), 2);
if (cfg->error_protection) {
writeheader(gfc, 0, 16); /* dummy */
}
if (cfg->version == 1) {
/* MPEG1 */
assert(l3_side->main_data_begin >= 0);
writeheader(gfc, (l3_side->main_data_begin), 9);
if (cfg->channels_out == 2)
writeheader(gfc, l3_side->private_bits, 3);
else
writeheader(gfc, l3_side->private_bits, 5);
for (ch = 0; ch < cfg->channels_out; ch++) {
int band;
for (band = 0; band < 4; band++) {
writeheader(gfc, l3_side->scfsi[ch][band], 1);
}
}
for (gr = 0; gr < 2; gr++) {
for (ch = 0; ch < cfg->channels_out; ch++) {
gr_info *const gi = &l3_side->tt[gr][ch];
writeheader(gfc, gi->part2_3_length + gi->part2_length, 12);
writeheader(gfc, gi->big_values / 2, 9);
writeheader(gfc, gi->global_gain, 8);
writeheader(gfc, gi->scalefac_compress, 4);
if (gi->block_type != NORM_TYPE) {
writeheader(gfc, 1, 1); /* window_switching_flag */
writeheader(gfc, gi->block_type, 2);
writeheader(gfc, gi->mixed_block_flag, 1);
if (gi->table_select[0] == 14)
gi->table_select[0] = 16;
writeheader(gfc, gi->table_select[0], 5);
if (gi->table_select[1] == 14)
gi->table_select[1] = 16;
writeheader(gfc, gi->table_select[1], 5);
writeheader(gfc, gi->subblock_gain[0], 3);
writeheader(gfc, gi->subblock_gain[1], 3);
writeheader(gfc, gi->subblock_gain[2], 3);
}
else {
writeheader(gfc, 0, 1); /* window_switching_flag */
if (gi->table_select[0] == 14)
gi->table_select[0] = 16;
writeheader(gfc, gi->table_select[0], 5);
if (gi->table_select[1] == 14)
gi->table_select[1] = 16;
writeheader(gfc, gi->table_select[1], 5);
if (gi->table_select[2] == 14)
gi->table_select[2] = 16;
writeheader(gfc, gi->table_select[2], 5);
assert(0 <= gi->region0_count && gi->region0_count < 16);
assert(0 <= gi->region1_count && gi->region1_count < 8);
writeheader(gfc, gi->region0_count, 4);
writeheader(gfc, gi->region1_count, 3);
}
writeheader(gfc, gi->preflag, 1);
writeheader(gfc, gi->scalefac_scale, 1);
writeheader(gfc, gi->count1table_select, 1);
}
}
}
else {
/* MPEG2 */
assert(l3_side->main_data_begin >= 0);
writeheader(gfc, (l3_side->main_data_begin), 8);
writeheader(gfc, l3_side->private_bits, cfg->channels_out);
gr = 0;
for (ch = 0; ch < cfg->channels_out; ch++) {
gr_info *const gi = &l3_side->tt[gr][ch];
writeheader(gfc, gi->part2_3_length + gi->part2_length, 12);
writeheader(gfc, gi->big_values / 2, 9);
writeheader(gfc, gi->global_gain, 8);
writeheader(gfc, gi->scalefac_compress, 9);
if (gi->block_type != NORM_TYPE) {
writeheader(gfc, 1, 1); /* window_switching_flag */
writeheader(gfc, gi->block_type, 2);
writeheader(gfc, gi->mixed_block_flag, 1);
if (gi->table_select[0] == 14)
gi->table_select[0] = 16;
writeheader(gfc, gi->table_select[0], 5);
if (gi->table_select[1] == 14)
gi->table_select[1] = 16;
writeheader(gfc, gi->table_select[1], 5);
writeheader(gfc, gi->subblock_gain[0], 3);
writeheader(gfc, gi->subblock_gain[1], 3);
writeheader(gfc, gi->subblock_gain[2], 3);
}
else {
writeheader(gfc, 0, 1); /* window_switching_flag */
if (gi->table_select[0] == 14)
gi->table_select[0] = 16;
writeheader(gfc, gi->table_select[0], 5);
if (gi->table_select[1] == 14)
gi->table_select[1] = 16;
writeheader(gfc, gi->table_select[1], 5);
if (gi->table_select[2] == 14)
gi->table_select[2] = 16;
writeheader(gfc, gi->table_select[2], 5);
assert(0 <= gi->region0_count && gi->region0_count < 16);
assert(0 <= gi->region1_count && gi->region1_count < 8);
writeheader(gfc, gi->region0_count, 4);
writeheader(gfc, gi->region1_count, 3);
}
writeheader(gfc, gi->scalefac_scale, 1);
writeheader(gfc, gi->count1table_select, 1);
}
}
if (cfg->error_protection) {
/* (jo) error_protection: add crc16 information to header */
CRC_writeheader(gfc, esv->header[esv->h_ptr].buf);
}
{
int const old = esv->h_ptr;
assert(esv->header[old].ptr == cfg->sideinfo_len * 8);
esv->h_ptr = (old + 1) & (MAX_HEADER_BUF - 1);
esv->header[esv->h_ptr].write_timing = esv->header[old].write_timing + bitsPerFrame;
if (esv->h_ptr == esv->w_ptr) {
/* yikes! we are out of header buffer space */
ERRORF(gfc, "Error: MAX_HEADER_BUF too small in bitstream.c \n");
}
}
}
inline static int
huffman_coder_count1(lame_internal_flags * gfc, gr_info const *gi)
{
/* Write count1 area */
struct huffcodetab const *const h = &ht[gi->count1table_select + 32];
int i, bits = 0;
#ifdef DEBUG
int gegebo = gfc->bs.totbit;
#endif
int const *ix = &gi->l3_enc[gi->big_values];
FLOAT const *xr = &gi->xr[gi->big_values];
assert(gi->count1table_select < 2);
for (i = (gi->count1 - gi->big_values) / 4; i > 0; --i) {
int huffbits = 0;
int p = 0, v;
v = ix[0];
if (v) {
p += 8;
if (xr[0] < 0.0f)
huffbits++;
assert(v <= 1);
}
v = ix[1];
if (v) {
p += 4;
huffbits *= 2;
if (xr[1] < 0.0f)
huffbits++;
assert(v <= 1);
}
v = ix[2];
if (v) {
p += 2;
huffbits *= 2;
if (xr[2] < 0.0f)
huffbits++;
assert(v <= 1);
}
v = ix[3];
if (v) {
p++;
huffbits *= 2;
if (xr[3] < 0.0f)
huffbits++;
assert(v <= 1);
}
ix += 4;
xr += 4;
putbits2(gfc, huffbits + h->table[p], h->hlen[p]);
bits += h->hlen[p];
}
#ifdef DEBUG
DEBUGF(gfc, "count1: real: %ld counted:%d (bigv %d count1len %d)\n",
gfc->bs.totbit - gegebo, gi->count1bits, gi->big_values, gi->count1);
#endif
return bits;
}
/*
Implements the pseudocode of page 98 of the IS
*/
inline static int
Huffmancode(lame_internal_flags * const gfc, const unsigned int tableindex,
int start, int end, gr_info const *gi)
{
struct huffcodetab const *const h = &ht[tableindex];
unsigned int const linbits = h->xlen;
int i, bits = 0;
assert(tableindex < 32u);
if (!tableindex)
return bits;
for (i = start; i < end; i += 2) {
int16_t cbits = 0;
uint16_t xbits = 0;
unsigned int xlen = h->xlen;
unsigned int ext = 0;
unsigned int x1 = gi->l3_enc[i];
unsigned int x2 = gi->l3_enc[i + 1];
assert(gi->l3_enc[i] >= 0);
assert(gi->l3_enc[i+1] >= 0);
if (x1 != 0u) {
if (gi->xr[i] < 0.0f)
ext++;
cbits--;
}
if (tableindex > 15u) {
/* use ESC-words */
if (x1 >= 15u) {
uint16_t const linbits_x1 = x1 - 15u;
assert(linbits_x1 <= h->linmax);
ext |= linbits_x1 << 1u;
xbits = linbits;
x1 = 15u;
}
if (x2 >= 15u) {
uint16_t const linbits_x2 = x2 - 15u;
assert(linbits_x2 <= h->linmax);
ext <<= linbits;
ext |= linbits_x2;
xbits += linbits;
x2 = 15u;
}
xlen = 16;
}
if (x2 != 0u) {
ext <<= 1;
if (gi->xr[i + 1] < 0.0f)
ext++;
cbits--;
}
assert((x1 | x2) < 16u);
x1 = x1 * xlen + x2;
xbits -= cbits;
cbits += h->hlen[x1];
assert(cbits <= MAX_LENGTH);
assert(xbits <= MAX_LENGTH);
putbits2(gfc, h->table[x1], cbits);
putbits2(gfc, (int)ext, xbits);
bits += cbits + xbits;
}
return bits;
}
/*
Note the discussion of huffmancodebits() on pages 28
and 29 of the IS, as well as the definitions of the side
information on pages 26 and 27.
*/
static int
ShortHuffmancodebits(lame_internal_flags * gfc, gr_info const *gi)
{
int bits;
int region1Start;
region1Start = 3 * gfc->scalefac_band.s[3];
if (region1Start > gi->big_values)
region1Start = gi->big_values;
/* short blocks do not have a region2 */
bits = Huffmancode(gfc, gi->table_select[0], 0, region1Start, gi);
bits += Huffmancode(gfc, gi->table_select[1], region1Start, gi->big_values, gi);
return bits;
}
static int
LongHuffmancodebits(lame_internal_flags * gfc, gr_info const *gi)
{
unsigned int i;
int bigvalues, bits;
int region1Start, region2Start;
bigvalues = gi->big_values;
assert(0 <= bigvalues && bigvalues <= 576);
assert(gi->region0_count >= -1);
assert(gi->region1_count >= -1);
i = gi->region0_count + 1;
assert((size_t) i < dimension_of(gfc->scalefac_band.l));
region1Start = gfc->scalefac_band.l[i];
i += gi->region1_count + 1;
assert((size_t) i < dimension_of(gfc->scalefac_band.l));
region2Start = gfc->scalefac_band.l[i];
if (region1Start > bigvalues)
region1Start = bigvalues;
if (region2Start > bigvalues)
region2Start = bigvalues;
bits = Huffmancode(gfc, gi->table_select[0], 0, region1Start, gi);
bits += Huffmancode(gfc, gi->table_select[1], region1Start, region2Start, gi);
bits += Huffmancode(gfc, gi->table_select[2], region2Start, bigvalues, gi);
return bits;
}
inline static int
writeMainData(lame_internal_flags * const gfc)
{
SessionConfig_t const *const cfg = &gfc->cfg;
III_side_info_t const *const l3_side = &gfc->l3_side;
int gr, ch, sfb, data_bits, tot_bits = 0;
if (cfg->version == 1) {
/* MPEG 1 */
for (gr = 0; gr < 2; gr++) {
for (ch = 0; ch < cfg->channels_out; ch++) {
gr_info const *const gi = &l3_side->tt[gr][ch];
int const slen1 = slen1_tab[gi->scalefac_compress];
int const slen2 = slen2_tab[gi->scalefac_compress];
data_bits = 0;
#ifdef DEBUG
hogege = gfc->bs.totbit;
#endif
for (sfb = 0; sfb < gi->sfbdivide; sfb++) {
if (gi->scalefac[sfb] == -1)
continue; /* scfsi is used */
putbits2(gfc, gi->scalefac[sfb], slen1);
data_bits += slen1;
}
for (; sfb < gi->sfbmax; sfb++) {
if (gi->scalefac[sfb] == -1)
continue; /* scfsi is used */
putbits2(gfc, gi->scalefac[sfb], slen2);
data_bits += slen2;
}
assert(data_bits == gi->part2_length);
if (gi->block_type == SHORT_TYPE) {
data_bits += ShortHuffmancodebits(gfc, gi);
}
else {
data_bits += LongHuffmancodebits(gfc, gi);
}
data_bits += huffman_coder_count1(gfc, gi);
#ifdef DEBUG
DEBUGF(gfc, "<%ld> ", gfc->bs.totbit - hogege);
#endif
/* does bitcount in quantize.c agree with actual bit count? */
assert(data_bits == gi->part2_3_length + gi->part2_length);
tot_bits += data_bits;
} /* for ch */
} /* for gr */
}
else {
/* MPEG 2 */
gr = 0;
for (ch = 0; ch < cfg->channels_out; ch++) {
gr_info const *const gi = &l3_side->tt[gr][ch];
int i, sfb_partition, scale_bits = 0;
assert(gi->sfb_partition_table);
data_bits = 0;
#ifdef DEBUG
hogege = gfc->bs.totbit;
#endif
sfb = 0;
sfb_partition = 0;
if (gi->block_type == SHORT_TYPE) {
for (; sfb_partition < 4; sfb_partition++) {
int const sfbs = gi->sfb_partition_table[sfb_partition] / 3;
int const slen = gi->slen[sfb_partition];
for (i = 0; i < sfbs; i++, sfb++) {
putbits2(gfc, Max(gi->scalefac[sfb * 3 + 0], 0), slen);
putbits2(gfc, Max(gi->scalefac[sfb * 3 + 1], 0), slen);
putbits2(gfc, Max(gi->scalefac[sfb * 3 + 2], 0), slen);
scale_bits += 3 * slen;
}
}
data_bits += ShortHuffmancodebits(gfc, gi);
}
else {
for (; sfb_partition < 4; sfb_partition++) {
int const sfbs = gi->sfb_partition_table[sfb_partition];
int const slen = gi->slen[sfb_partition];
for (i = 0; i < sfbs; i++, sfb++) {
putbits2(gfc, Max(gi->scalefac[sfb], 0), slen);
scale_bits += slen;
}
}
data_bits += LongHuffmancodebits(gfc, gi);
}
data_bits += huffman_coder_count1(gfc, gi);
#ifdef DEBUG
DEBUGF(gfc, "<%ld> ", gfc->bs.totbit - hogege);
#endif
/* does bitcount in quantize.c agree with actual bit count? */
assert(data_bits == gi->part2_3_length);
assert(scale_bits == gi->part2_length);
tot_bits += scale_bits + data_bits;
} /* for ch */
} /* for gf */
return tot_bits;
} /* main_data */
/* compute the number of bits required to flush all mp3 frames
currently in the buffer. This should be the same as the
reservoir size. Only call this routine between frames - i.e.
only after all headers and data have been added to the buffer
by format_bitstream().
Also compute total_bits_output =
size of mp3 buffer (including frame headers which may not
have yet been send to the mp3 buffer) +
number of bits needed to flush all mp3 frames.
total_bytes_output is the size of the mp3 output buffer if
lame_encode_flush_nogap() was called right now.
*/
int
compute_flushbits(const lame_internal_flags * gfc, int *total_bytes_output)
{
SessionConfig_t const *const cfg = &gfc->cfg;
EncStateVar_t const *const esv = &gfc->sv_enc;
int flushbits, remaining_headers;
int bitsPerFrame;
int last_ptr, first_ptr;
first_ptr = esv->w_ptr; /* first header to add to bitstream */
last_ptr = esv->h_ptr - 1; /* last header to add to bitstream */
if (last_ptr == -1)
last_ptr = MAX_HEADER_BUF - 1;
/* add this many bits to bitstream so we can flush all headers */
flushbits = esv->header[last_ptr].write_timing - gfc->bs.totbit;
*total_bytes_output = flushbits;
if (flushbits >= 0) {
/* if flushbits >= 0, some headers have not yet been written */
/* reduce flushbits by the size of the headers */
remaining_headers = 1 + last_ptr - first_ptr;
if (last_ptr < first_ptr)
remaining_headers = 1 + last_ptr - first_ptr + MAX_HEADER_BUF;
flushbits -= remaining_headers * 8 * cfg->sideinfo_len;
}
/* finally, add some bits so that the last frame is complete
* these bits are not necessary to decode the last frame, but
* some decoders will ignore last frame if these bits are missing
*/
bitsPerFrame = getframebits(gfc);
flushbits += bitsPerFrame;
*total_bytes_output += bitsPerFrame;
/* round up: */
if (*total_bytes_output % 8)
*total_bytes_output = 1 + (*total_bytes_output / 8);
else
*total_bytes_output = (*total_bytes_output / 8);
*total_bytes_output += gfc->bs.buf_byte_idx + 1;
if (flushbits < 0) {
#if 0
/* if flushbits < 0, this would mean that the buffer looks like:
* (data...) last_header (data...) (extra data that should not be here...)
*/
DEBUGF(gfc, "last header write_timing = %i \n", esv->header[last_ptr].write_timing);
DEBUGF(gfc, "first header write_timing = %i \n", esv->header[first_ptr].write_timing);
DEBUGF(gfc, "bs.totbit: %i \n", gfc->bs.totbit);
DEBUGF(gfc, "first_ptr, last_ptr %i %i \n", first_ptr, last_ptr);
DEBUGF(gfc, "remaining_headers = %i \n", remaining_headers);
DEBUGF(gfc, "bitsperframe: %i \n", bitsPerFrame);
DEBUGF(gfc, "sidelen: %i \n", cfg->sideinfo_len);
#endif
ERRORF(gfc, "strange error flushing buffer ... \n");
}
return flushbits;
}
void
flush_bitstream(lame_internal_flags * gfc)
{
EncStateVar_t *const esv = &gfc->sv_enc;
III_side_info_t *l3_side;
int nbytes;
int flushbits;
int last_ptr = esv->h_ptr - 1; /* last header to add to bitstream */
if (last_ptr == -1)
last_ptr = MAX_HEADER_BUF - 1;
l3_side = &gfc->l3_side;
if ((flushbits = compute_flushbits(gfc, &nbytes)) < 0)
return;
drain_into_ancillary(gfc, flushbits);
/* check that the 100% of the last frame has been written to bitstream */
assert(esv->header[last_ptr].write_timing + getframebits(gfc)
== gfc->bs.totbit);
/* we have padded out all frames with ancillary data, which is the
same as filling the bitreservoir with ancillary data, so : */
esv->ResvSize = 0;
l3_side->main_data_begin = 0;
}
void
add_dummy_byte(lame_internal_flags * gfc, unsigned char val, unsigned int n)
{
EncStateVar_t *const esv = &gfc->sv_enc;
int i;
while (n-- > 0u) {
putbits_noheaders(gfc, val, 8);
for (i = 0; i < MAX_HEADER_BUF; ++i)
esv->header[i].write_timing += 8;
}
}
/*
format_bitstream()
This is called after a frame of audio has been quantized and coded.
It will write the encoded audio to the bitstream. Note that
from a layer3 encoder's perspective the bit stream is primarily
a series of main_data() blocks, with header and side information
inserted at the proper locations to maintain framing. (See Figure A.7
in the IS).
*/
int
format_bitstream(lame_internal_flags * gfc)
{
SessionConfig_t const *const cfg = &gfc->cfg;
EncStateVar_t *const esv = &gfc->sv_enc;
int bits, nbytes;
III_side_info_t *l3_side;
int bitsPerFrame;
l3_side = &gfc->l3_side;
bitsPerFrame = getframebits(gfc);
drain_into_ancillary(gfc, l3_side->resvDrain_pre);
encodeSideInfo2(gfc, bitsPerFrame);
bits = 8 * cfg->sideinfo_len;
bits += writeMainData(gfc);
drain_into_ancillary(gfc, l3_side->resvDrain_post);
bits += l3_side->resvDrain_post;
l3_side->main_data_begin += (bitsPerFrame - bits) / 8;
/* compare number of bits needed to clear all buffered mp3 frames
* with what we think the resvsize is: */
if (compute_flushbits(gfc, &nbytes) != esv->ResvSize) {
ERRORF(gfc, "Internal buffer inconsistency. flushbits <> ResvSize");
}
/* compare main_data_begin for the next frame with what we
* think the resvsize is: */
if ((l3_side->main_data_begin * 8) != esv->ResvSize) {
ERRORF(gfc, "bit reservoir error: \n"
"l3_side->main_data_begin: %i \n"
"Resvoir size: %i \n"
"resv drain (post) %i \n"
"resv drain (pre) %i \n"
"header and sideinfo: %i \n"
"data bits: %i \n"
"total bits: %i (remainder: %i) \n"
"bitsperframe: %i \n",
8 * l3_side->main_data_begin,
esv->ResvSize,
l3_side->resvDrain_post,
l3_side->resvDrain_pre,
8 * cfg->sideinfo_len,
bits - l3_side->resvDrain_post - 8 * cfg->sideinfo_len,
bits, bits % 8, bitsPerFrame);
ERRORF(gfc, "This is a fatal error. It has several possible causes:");
ERRORF(gfc, "90%% LAME compiled with buggy version of gcc using advanced optimizations");
ERRORF(gfc, " 9%% Your system is overclocked");
ERRORF(gfc, " 1%% bug in LAME encoding library");
esv->ResvSize = l3_side->main_data_begin * 8;
};
assert(gfc->bs.totbit % 8 == 0);
if (gfc->bs.totbit > 1000000000) {
/* to avoid totbit overflow, (at 8h encoding at 128kbs) lets reset bit counter */
int i;
for (i = 0; i < MAX_HEADER_BUF; ++i)
esv->header[i].write_timing -= gfc->bs.totbit;
gfc->bs.totbit = 0;
}
return 0;
}
static int
do_gain_analysis(lame_internal_flags * gfc, unsigned char* buffer, int minimum)
{
SessionConfig_t const *const cfg = &gfc->cfg;
RpgStateVar_t const *const rsv = &gfc->sv_rpg;
RpgResult_t *const rov = &gfc->ov_rpg;
#ifdef DECODE_ON_THE_FLY
if (cfg->decode_on_the_fly) { /* decode the frame */
sample_t pcm_buf[2][1152];
int mp3_in = minimum;
int samples_out = -1;
/* re-synthesis to pcm. Repeat until we get a samples_out=0 */
while (samples_out != 0) {
samples_out = hip_decode1_unclipped(gfc->hip, buffer, mp3_in, pcm_buf[0], pcm_buf[1]);
/* samples_out = 0: need more data to decode
* samples_out = -1: error. Lets assume 0 pcm output
* samples_out = number of samples output */
/* set the lenght of the mp3 input buffer to zero, so that in the
* next iteration of the loop we will be querying mpglib about
* buffered data */
mp3_in = 0;
if (samples_out == -1) {
/* error decoding. Not fatal, but might screw up
* the ReplayGain tag. What should we do? Ignore for now */
samples_out = 0;
}
if (samples_out > 0) {
/* process the PCM data */
/* this should not be possible, and indicates we have
* overflown the pcm_buf buffer */
assert(samples_out <= 1152);
if (cfg->findPeakSample) {
int i;
/* FIXME: is this correct? maybe Max(fabs(pcm),PeakSample) */
for (i = 0; i < samples_out; i++) {
if (pcm_buf[0][i] > rov->PeakSample)
rov->PeakSample = pcm_buf[0][i];
else if (-pcm_buf[0][i] > rov->PeakSample)
rov->PeakSample = -pcm_buf[0][i];
}
if (cfg->channels_out > 1)
for (i = 0; i < samples_out; i++) {
if (pcm_buf[1][i] > rov->PeakSample)
rov->PeakSample = pcm_buf[1][i];
else if (-pcm_buf[1][i] > rov->PeakSample)
rov->PeakSample = -pcm_buf[1][i];
}
}
if (cfg->findReplayGain)
if (AnalyzeSamples
(rsv->rgdata, pcm_buf[0], pcm_buf[1], samples_out,
cfg->channels_out) == GAIN_ANALYSIS_ERROR)
return -6;
} /* if (samples_out>0) */
} /* while (samples_out!=0) */
} /* if (gfc->decode_on_the_fly) */
#endif
return minimum;
}
static int
do_copy_buffer(lame_internal_flags * gfc, unsigned char *buffer, int size)
{
Bit_stream_struc *const bs = &gfc->bs;
int const minimum = bs->buf_byte_idx + 1;
if (minimum <= 0)
return 0;
if (minimum > size)
return -1; /* buffer is too small */
memcpy(buffer, bs->buf, minimum);
bs->buf_byte_idx = -1;
bs->buf_bit_idx = 0;
return minimum;
}
/* copy data out of the internal MP3 bit buffer into a user supplied
unsigned char buffer.
mp3data=0 indicates data in buffer is an id3tags and VBR tags
mp3data=1 data is real mp3 frame data.
*/
int
copy_buffer(lame_internal_flags * gfc, unsigned char *buffer, int size, int mp3data)
{
int const minimum = do_copy_buffer(gfc, buffer, size);
if (minimum > 0 && mp3data) {
UpdateMusicCRC(&gfc->nMusicCRC, buffer, minimum);
/** sum number of bytes belonging to the mp3 stream
* this info will be written into the Xing/LAME header for seeking
*/
gfc->VBR_seek_table.nBytesWritten += minimum;
return do_gain_analysis(gfc, buffer, minimum);
} /* if (mp3data) */
return minimum;
}
void
init_bit_stream_w(lame_internal_flags * gfc)
{
EncStateVar_t *const esv = &gfc->sv_enc;
esv->h_ptr = esv->w_ptr = 0;
esv->header[esv->h_ptr].write_timing = 0;
gfc->bs.buf = lame_calloc(unsigned char, BUFFER_SIZE);
gfc->bs.buf_size = BUFFER_SIZE;
gfc->bs.buf_byte_idx = -1;
gfc->bs.buf_bit_idx = 0;
gfc->bs.totbit = 0;
}
/* end of bitstream.c */
|