aboutsummaryrefslogtreecommitdiff
path: root/Src/external_dependencies/openmpt-trunk/soundlib/FloatMixer.h
blob: d53fbabc69d65e86d5b7095bc64ba5316486bf7e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/*
 * FloatMixer.h
 * ------------
 * Purpose: Floating point mixer classes
 * Notes  : (currently none)
 * Authors: OpenMPT Devs
 * The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
 */


#pragma once

#include "openmpt/all/BuildSettings.hpp"

#include "MixerInterface.h"
#include "Resampler.h"

OPENMPT_NAMESPACE_BEGIN

template<int channelsOut, int channelsIn, typename out, typename in, int int2float>
struct IntToFloatTraits : public MixerTraits<channelsOut, channelsIn, out, in>
{
	static_assert(std::numeric_limits<input_t>::is_integer, "Input must be integer");
	static_assert(!std::numeric_limits<output_t>::is_integer, "Output must be floating point");

	static MPT_CONSTEXPRINLINE output_t Convert(const input_t x)
	{
		return static_cast<output_t>(x) * (static_cast<output_t>(1) / static_cast<output_t>(int2float));
	}
};

typedef IntToFloatTraits<2, 1, mixsample_t, int8,  -int8_min>  Int8MToFloatS;
typedef IntToFloatTraits<2, 1, mixsample_t, int16, -int16_min> Int16MToFloatS;
typedef IntToFloatTraits<2, 2, mixsample_t, int8,  -int8_min>  Int8SToFloatS;
typedef IntToFloatTraits<2, 2, mixsample_t, int16, -int16_min> Int16SToFloatS;


//////////////////////////////////////////////////////////////////////////
// Interpolation templates

template<class Traits>
struct LinearInterpolation
{
	MPT_FORCEINLINE LinearInterpolation(const ModChannel &, const CResampler &, unsigned int) { }

	MPT_FORCEINLINE void operator() (typename Traits::outbuf_t &outSample, const typename Traits::input_t * const inBuffer, const uint32 posLo)
	{
		static_assert(static_cast<int>(Traits::numChannelsIn) <= static_cast<int>(Traits::numChannelsOut), "Too many input channels");
		const typename Traits::output_t fract = posLo / static_cast<typename Traits::output_t>(0x100000000); //CResampler::LinearTablef[posLo >> 24];

		for(int i = 0; i < Traits::numChannelsIn; i++)
		{
			typename Traits::output_t srcVol = Traits::Convert(inBuffer[i]);
			typename Traits::output_t destVol = Traits::Convert(inBuffer[i + Traits::numChannelsIn]);

			outSample[i] = srcVol + fract * (destVol - srcVol);
		}
	}
};


template<class Traits>
struct FastSincInterpolation
{
	MPT_FORCEINLINE FastSincInterpolation(const ModChannel &, const CResampler &, unsigned int) { }

	MPT_FORCEINLINE void operator() (typename Traits::outbuf_t &outSample, const typename Traits::input_t * const inBuffer, const uint32 posLo)
	{
		static_assert(static_cast<int>(Traits::numChannelsIn) <= static_cast<int>(Traits::numChannelsOut), "Too many input channels");
		const typename Traits::output_t *lut = CResampler::FastSincTablef + ((posLo >> 22) & 0x3FC);

		for(int i = 0; i < Traits::numChannelsIn; i++)
		{
			outSample[i] =
				  lut[0] * Traits::Convert(inBuffer[i - Traits::numChannelsIn])
				+ lut[1] * Traits::Convert(inBuffer[i])
				+ lut[2] * Traits::Convert(inBuffer[i + Traits::numChannelsIn])
				+ lut[3] * Traits::Convert(inBuffer[i + 2 * Traits::numChannelsIn]);
		}
	}
};


template<class Traits>
struct PolyphaseInterpolation
{
	const typename Traits::output_t *sinc;

	MPT_FORCEINLINE PolyphaseInterpolation(const ModChannel &chn, const CResampler &resampler, unsigned int)
	{
		sinc = (((chn.increment > SamplePosition(0x130000000ll)) || (chn.increment < -SamplePosition(-0x130000000ll))) ?
			(((chn.increment > SamplePosition(0x180000000ll)) || (chn.increment < SamplePosition(-0x180000000ll))) ? resampler.gDownsample2x : resampler.gDownsample13x) : resampler.gKaiserSinc);
	}

	MPT_FORCEINLINE void operator() (typename Traits::outbuf_t &outSample, const typename Traits::input_t * const inBuffer, const uint32 posLo)
	{
		static_assert(static_cast<int>(Traits::numChannelsIn) <= static_cast<int>(Traits::numChannelsOut), "Too many input channels");
		const typename Traits::output_t *lut = sinc + ((posLo >> (32 - SINC_PHASES_BITS)) & SINC_MASK) * SINC_WIDTH;

		for(int i = 0; i < Traits::numChannelsIn; i++)
		{
			outSample[i] =
				  lut[0] * Traits::Convert(inBuffer[i - 3 * Traits::numChannelsIn])
				+ lut[1] * Traits::Convert(inBuffer[i - 2 * Traits::numChannelsIn])
				+ lut[2] * Traits::Convert(inBuffer[i - Traits::numChannelsIn])
				+ lut[3] * Traits::Convert(inBuffer[i])
				+ lut[4] * Traits::Convert(inBuffer[i + Traits::numChannelsIn])
				+ lut[5] * Traits::Convert(inBuffer[i + 2 * Traits::numChannelsIn])
				+ lut[6] * Traits::Convert(inBuffer[i + 3 * Traits::numChannelsIn])
				+ lut[7] * Traits::Convert(inBuffer[i + 4 * Traits::numChannelsIn]);
		}
	}
};


template<class Traits>
struct FIRFilterInterpolation
{
	const typename Traits::output_t *WFIRlut;

	MPT_FORCEINLINE FIRFilterInterpolation(const ModChannel &, const CResampler &resampler, unsigned int)
	{
		WFIRlut = resampler.m_WindowedFIR.lut;
	}

	MPT_FORCEINLINE void operator() (typename Traits::outbuf_t &outSample, const typename Traits::input_t * const inBuffer, const uint32 posLo)
	{
		static_assert(static_cast<int>(Traits::numChannelsIn) <= static_cast<int>(Traits::numChannelsOut), "Too many input channels");
		const typename Traits::output_t * const lut = WFIRlut + ((((posLo >> 16) + WFIR_FRACHALVE) >> WFIR_FRACSHIFT) & WFIR_FRACMASK);

		for(int i = 0; i < Traits::numChannelsIn; i++)
		{
			outSample[i] =
				  lut[0] * Traits::Convert(inBuffer[i - 3 * Traits::numChannelsIn])
				+ lut[1] * Traits::Convert(inBuffer[i - 2 * Traits::numChannelsIn])
				+ lut[2] * Traits::Convert(inBuffer[i - Traits::numChannelsIn])
				+ lut[3] * Traits::Convert(inBuffer[i])
				+ lut[4] * Traits::Convert(inBuffer[i + Traits::numChannelsIn])
				+ lut[5] * Traits::Convert(inBuffer[i + 2 * Traits::numChannelsIn])
				+ lut[6] * Traits::Convert(inBuffer[i + 3 * Traits::numChannelsIn])
				+ lut[7] * Traits::Convert(inBuffer[i + 4 * Traits::numChannelsIn]);
		}
	}
};


//////////////////////////////////////////////////////////////////////////
// Mixing templates (add sample to stereo mix)

template<class Traits>
struct NoRamp
{
	typename Traits::output_t lVol, rVol;

	MPT_FORCEINLINE NoRamp(const ModChannel &chn)
	{
		lVol = static_cast<Traits::output_t>(chn.leftVol) * (1.0f / 4096.0f);
		rVol = static_cast<Traits::output_t>(chn.rightVol) * (1.0f / 4096.0f);
	}
};


struct Ramp
{
	ModChannel &channel;
	int32 lRamp, rRamp;

	MPT_FORCEINLINE Ramp(ModChannel &chn)
		: channel{chn}
	{
		lRamp = chn.rampLeftVol;
		rRamp = chn.rampRightVol;
	}

	MPT_FORCEINLINE ~Ramp()
	{
		channel.rampLeftVol = lRamp; channel.leftVol = lRamp >> VOLUMERAMPPRECISION;
		channel.rampRightVol = rRamp; channel.rightVol = rRamp >> VOLUMERAMPPRECISION;
	}
};


// Legacy optimization: If chn.nLeftVol == chn.nRightVol, save one multiplication instruction
template<class Traits>
struct MixMonoFastNoRamp : public NoRamp<Traits>
{
	MPT_FORCEINLINE void operator() (const typename Traits::outbuf_t &outSample, const ModChannel &chn, typename Traits::output_t * const outBuffer)
	{
		typename Traits::output_t vol = outSample[0] * lVol;
		for(int i = 0; i < Traits::numChannelsOut; i++)
		{
			outBuffer[i] += vol;
		}
	}
};


template<class Traits>
struct MixMonoNoRamp : public NoRamp<Traits>
{
	MPT_FORCEINLINE void operator() (const typename Traits::outbuf_t &outSample, const ModChannel &, typename Traits::output_t * const outBuffer)
	{
		outBuffer[0] += outSample[0] * lVol;
		outBuffer[1] += outSample[0] * rVol;
	}
};


template<class Traits>
struct MixMonoRamp : public Ramp
{
	MPT_FORCEINLINE void operator() (const typename Traits::outbuf_t &outSample, const ModChannel &chn, typename Traits::output_t * const outBuffer)
	{
		// TODO volume is not float, can we optimize this?
		lRamp += chn.leftRamp;
		rRamp += chn.rightRamp;
		outBuffer[0] += outSample[0] * (lRamp >> VOLUMERAMPPRECISION) * (1.0f / 4096.0f);
		outBuffer[1] += outSample[0] * (rRamp >> VOLUMERAMPPRECISION) * (1.0f / 4096.0f);
	}
};


template<class Traits>
struct MixStereoNoRamp : public NoRamp<Traits>
{
	MPT_FORCEINLINE void operator() (const typename Traits::outbuf_t &outSample, const ModChannel &, typename Traits::output_t * const outBuffer)
	{
		outBuffer[0] += outSample[0] * lVol;
		outBuffer[1] += outSample[1] * rVol;
	}
};


template<class Traits>
struct MixStereoRamp : public Ramp
{
	MPT_FORCEINLINE void operator() (const typename Traits::outbuf_t &outSample, const ModChannel &chn, typename Traits::output_t * const outBuffer)
	{
		// TODO volume is not float, can we optimize this?
		lRamp += chn.leftRamp;
		rRamp += chn.rightRamp;
		outBuffer[0] += outSample[0] * (lRamp >> VOLUMERAMPPRECISION) * (1.0f / 4096.0f);
		outBuffer[1] += outSample[1] * (rRamp >> VOLUMERAMPPRECISION) * (1.0f / 4096.0f);
	}
};


//////////////////////////////////////////////////////////////////////////
// Filter templates


template<class Traits>
struct NoFilter
{
	MPT_FORCEINLINE NoFilter(const ModChannel &) { }

	MPT_FORCEINLINE void operator() (const typename Traits::outbuf_t &, const ModChannel &) { }
};


// Resonant filter
template<class Traits>
struct ResonantFilter
{
	ModChannel &channel;
	// Filter history
	typename Traits::output_t fy[Traits::numChannelsIn][2];

	MPT_FORCEINLINE ResonantFilter(ModChannel &chn)
		: channel{chn}
	{
		for(int i = 0; i < Traits::numChannelsIn; i++)
		{
			fy[i][0] = chn.nFilter_Y[i][0];
			fy[i][1] = chn.nFilter_Y[i][1];
		}
	}

	MPT_FORCEINLINE ~ResonantFilter(ModChannel &chn)
	{
		for(int i = 0; i < Traits::numChannelsIn; i++)
		{
			channel.nFilter_Y[i][0] = fy[i][0];
			channel.nFilter_Y[i][1] = fy[i][1];
		}
	}

	// Filter values are clipped to double the input range
#define ClipFilter(x) Clamp(x, static_cast<Traits::output_t>(-2.0f), static_cast<Traits::output_t>(2.0f))

	MPT_FORCEINLINE void operator() (typename Traits::outbuf_t &outSample, const ModChannel &chn)
	{
		static_assert(static_cast<int>(Traits::numChannelsIn) <= static_cast<int>(Traits::numChannelsOut), "Too many input channels");

		for(int i = 0; i < Traits::numChannelsIn; i++)
		{
			typename Traits::output_t val = outSample[i] * chn.nFilter_A0 + ClipFilter(fy[i][0]) * chn.nFilter_B0 + ClipFilter(fy[i][1]) * chn.nFilter_B1;
			fy[i][1] = fy[i][0];
			fy[i][0] = val - (outSample[i] * chn.nFilter_HP);
			outSample[i] = val;
		}
	}

#undef ClipFilter
};


OPENMPT_NAMESPACE_END