aboutsummaryrefslogtreecommitdiff
path: root/Src/external_dependencies/openmpt-trunk/soundlib/Load_dsym.cpp
blob: d883def961302edeceb9cda833a63974c62bbe36 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
/*
 * Load_dsym.cpp
 * -------------
 * Purpose: Digital Symphony module loader
 * Notes  : Based on information from the DSym_Info file and sigma-delta decompression code from TimPlayer.
 * Authors: OpenMPT Devs
 * The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
 */


#include "stdafx.h"
#include "Loaders.h"
#include "BitReader.h"

OPENMPT_NAMESPACE_BEGIN

struct DSymFileHeader
{
	char     magic[8];
	uint8le  version;      // 0 / 1
	uint8le  numChannels;  // 1...8
	uint16le numOrders;    // 0...4096
	uint16le numTracks;    // 0...4096
	uint16le infoLenLo;
	uint8le  infoLenHi;

	bool Validate() const
	{
		return !std::memcmp(magic, "\x02\x01\x13\x13\x14\x12\x01\x0B", 8)
			&& version <= 1
			&& numChannels >= 1 && numChannels <= 8
			&& numOrders <= 4096
			&& numTracks <= 4096;
	}

	uint64 GetHeaderMinimumAdditionalSize() const
	{
		return 72u;
	}
};

MPT_BINARY_STRUCT(DSymFileHeader, 17)


static std::vector<std::byte> DecompressDSymLZW(FileReader &file, uint32 size)
{
	BitReader bitFile(file);
	const auto startPos = bitFile.GetPosition();

	// In the best case, 13 bits decode 8192 bytes, a ratio of approximately 1:5042.
	// Too much for reserving memory in case of malformed files, just choose an arbitrary but realistic upper limit.
	std::vector<std::byte> output;
	output.reserve(std::min(size, std::min(mpt::saturate_cast<uint32>(file.BytesLeft()), Util::MaxValueOfType(size) / 50u) * 50u));

	static constexpr uint16 lzwBits = 13, MaxNodes = 1 << lzwBits;
	static constexpr uint16 ResetDict = 256, EndOfStream = 257;

	struct LZWEntry
	{
		uint16 prev;
		std::byte value;
	};
	std::vector<LZWEntry> dictionary(MaxNodes);
	std::vector<std::byte> match(MaxNodes);

	// Initialize dictionary
	for(int i = 0; i < 256; i++)
	{
		dictionary[i].prev = MaxNodes;
		dictionary[i].value = static_cast<std::byte>(i);
	}
	uint8 codeSize = 9;
	uint16 prevCode = 0;
	uint16 nextIndex = 257;
	while(true)
	{
		// Read next code
		const auto newCode = static_cast<uint16>(bitFile.ReadBits(codeSize));
		if(newCode == EndOfStream || newCode > nextIndex || output.size() >= size)
			break;

		// Reset dictionary
		if(newCode == ResetDict)
		{
			codeSize = 9;
			prevCode = 0;
			nextIndex = 257;
			continue;
		}

		// Output
		auto code = (newCode < nextIndex) ? newCode : prevCode;
		auto writeOffset = MaxNodes;
		do
		{
			match[--writeOffset] = dictionary[code].value;
			code = dictionary[code].prev;
		} while(code < MaxNodes);
		output.insert(output.end(), match.begin() + writeOffset, match.end());

		// Handling for KwKwK problem
		if(newCode == nextIndex)
			output.push_back(match[writeOffset]);

		// Add to dictionary
		if(nextIndex < MaxNodes)
		{
			// Special case for FULLEFFECT, NARCOSIS and NEWDANCE, which end with a dictionary size of 512
			// right before the end-of-stream token, but the code size is expected to be 9
			if(output.size() >= size)
				continue;

			dictionary[nextIndex].value = match[writeOffset];
			dictionary[nextIndex].prev = prevCode;
			
			nextIndex++;
			if(nextIndex != MaxNodes && nextIndex == (1u << codeSize))
				codeSize++;
		}

		prevCode = newCode;
	}
	MPT_ASSERT(output.size() == size);

	// Align length to 4 bytes
	file.Seek(startPos + ((bitFile.GetPosition() - startPos + 3u) & ~FileReader::off_t(3)));
	return output;
}


static std::vector<std::byte> DecompressDSymSigmaDelta(FileReader &file, uint32 size)
{
	const uint8 maxRunLength = std::max(file.ReadUint8(), uint8(1));

	BitReader bitFile(file);
	const auto startPos = bitFile.GetPosition();

	// In the best case, sigma-delta compression represents each sample point as one bit.
	// As a result, if we have a file length of n, we know that the sample can be at most n*8 sample points long.
	LimitMax(size, std::min(mpt::saturate_cast<uint32>(file.BytesLeft()), Util::MaxValueOfType(size) / 8u) * 8u);
	std::vector<std::byte> output(size);

	uint32 pos = 0;
	uint8 runLength = maxRunLength;
	uint8 numBits = 8;
	uint8 accum = static_cast<uint8>(bitFile.ReadBits(numBits));
	output[pos++] = mpt::byte_cast<std::byte>(accum);

	while(pos < size)
	{
		const uint32 value = bitFile.ReadBits(numBits);
		// Increase bit width
		if(value == 0)
		{
			if(numBits >= 9)
				break;
			numBits++;
			runLength = maxRunLength;
			continue;
		}

		if(value & 1)
			accum -= static_cast<uint8>(value >> 1);
		else
			accum += static_cast<uint8>(value >> 1);
		output[pos++] = mpt::byte_cast<std::byte>(accum);

		// Reset run length if high bit is set
		if((value >> (numBits - 1u)) != 0)
		{
			runLength = maxRunLength;
			continue;
		}
		// Decrease bit width
		if(--runLength == 0)
		{
			if(numBits > 1)
				numBits--;
			runLength = maxRunLength;
		}
	}

	// Align length to 4 bytes
	file.Seek(startPos + ((bitFile.GetPosition() - startPos + 3u) & ~FileReader::off_t(3)));
	return output;
}


static bool ReadDSymChunk(FileReader &file, std::vector<std::byte> &data, uint32 size)
{
	const uint8 packingType = file.ReadUint8();
	if(packingType > 1)
		return false;
	if(packingType)
	{
		try
		{
			data = DecompressDSymLZW(file, size);
		} catch(const BitReader::eof &)
		{
			return false;
		}
	} else
	{
		if(!file.CanRead(size))
			return false;
		file.ReadVector(data, size);
	}
	return data.size() >= size;
}


CSoundFile::ProbeResult CSoundFile::ProbeFileHeaderDSym(MemoryFileReader file, const uint64 *pfilesize)
{
	DSymFileHeader fileHeader;
	if(!file.ReadStruct(fileHeader))
		return ProbeWantMoreData;
	if(!fileHeader.Validate())
		return ProbeFailure;
	return ProbeAdditionalSize(file, pfilesize, fileHeader.GetHeaderMinimumAdditionalSize());
}


bool CSoundFile::ReadDSym(FileReader &file, ModLoadingFlags loadFlags)
{
	DSymFileHeader fileHeader;

	file.Rewind();
	if(!file.ReadStruct(fileHeader) || !fileHeader.Validate())
		return false;
	if(!file.CanRead(mpt::saturate_cast<FileReader::off_t>(fileHeader.GetHeaderMinimumAdditionalSize())))
		return false;
	if(loadFlags == onlyVerifyHeader)
		return true;

	InitializeGlobals(MOD_TYPE_MOD);
	m_SongFlags.set(SONG_IMPORTED | SONG_AMIGALIMITS);
	m_SongFlags.reset(SONG_ISAMIGA);
	m_nChannels = fileHeader.numChannels;
	m_nSamples = 63;

	for(CHANNELINDEX chn = 0; chn < m_nChannels; chn++)
	{
		InitChannel(chn);
		ChnSettings[chn].nPan = (((chn & 3) == 1) || ((chn & 3) == 2)) ? 64 : 192;
	}

	uint8 sampleNameLength[64] = {};
	for(SAMPLEINDEX smp = 1; smp <= m_nSamples; smp++)
	{
		Samples[smp].Initialize(MOD_TYPE_MOD);
		sampleNameLength[smp] = file.ReadUint8();
		if(!(sampleNameLength[smp] & 0x80))
			Samples[smp].nLength = file.ReadUint24LE() << 1;
	}

	file.ReadSizedString<uint8le, mpt::String::spacePadded>(m_songName);

	const auto allowedCommands = file.ReadArray<uint8, 8>();

	std::vector<std::byte> sequenceData;
	if(fileHeader.numOrders)
	{
		const uint32 sequenceSize = fileHeader.numOrders * fileHeader.numChannels * 2u;
		if(!ReadDSymChunk(file, sequenceData, sequenceSize))
			return false;
	}
	const auto sequence = mpt::as_span(reinterpret_cast<uint16le *>(sequenceData.data()), sequenceData.size() / 2u);

	std::vector<std::byte> trackData;
	trackData.reserve(fileHeader.numTracks * 256u);
	// For some reason, patterns are stored in 512K chunks
	for(uint16 offset = 0; offset < fileHeader.numTracks; offset += 2000)
	{
		const uint32 chunkSize = std::min(fileHeader.numTracks - offset, 2000) * 256;
		std::vector<std::byte> chunk;
		if(!ReadDSymChunk(file, chunk, chunkSize))
			return false;
		trackData.insert(trackData.end(), chunk.begin(), chunk.end());
	}
	const auto tracks = mpt::byte_cast<mpt::span<uint8>>(mpt::as_span(trackData));

	Order().resize(fileHeader.numOrders);
	for(ORDERINDEX pat = 0; pat < fileHeader.numOrders; pat++)
	{
		Order()[pat] = pat;
		if(!(loadFlags & loadPatternData) || !Patterns.Insert(pat, 64))
			continue;

		for(CHANNELINDEX chn = 0; chn < m_nChannels; chn++)
		{
			const uint16 track = sequence[pat * m_nChannels + chn];
			if(track >= fileHeader.numTracks)
				continue;

			ModCommand *m = Patterns[pat].GetpModCommand(0, chn);
			for(ROWINDEX row = 0; row < 64; row++, m += m_nChannels)
			{
				const auto data = tracks.subspan(track * 256 + row * 4, 4);
				m->note = data[0] & 0x3F;
				if(m->note)
					m->note += 47 + NOTE_MIN;
				else
					m->note = NOTE_NONE;

				m->instr = (data[0] >> 6) | ((data[1] & 0x0F) << 2);
				const uint8 command = (data[1] >> 6) | ((data[2] & 0x0F) << 2);
				const uint16 param = (data[2] >> 4) | (data[3] << 4);

				if(!(allowedCommands[command >> 3u] & (1u << (command & 7u))))
					continue;
				if(command == 0 && param == 0)
					continue;

				m->command = command;
				m->param = static_cast<uint8>(param);
				m->vol = static_cast<ModCommand::VOL>(param >> 8);
				
				switch(command)
				{
					case 0x00:  // 00 xyz Normal play or Arpeggio + Volume Slide Up
					case 0x01:  // 01 xyy Slide Up + Volume Slide Up
					case 0x02:  // 01 xyy Slide Up + Volume Slide Up
					case 0x20:  // 20 xyz Normal play or Arpeggio + Volume Slide Down
					case 0x21:  // 21 xyy Slide Up + Volume Slide Down
					case 0x22:  // 22 xyy Slide Down + Volume Slide Down
						m->command &= 0x0F;
						ConvertModCommand(*m);
						if(m->vol)
							m->volcmd = (command < 0x20) ? VOLCMD_VOLSLIDEUP : VOLCMD_VOLSLIDEDOWN;
						break;
					case 0x03:  // 03 xyy Tone Portamento
					case 0x04:  // 04 xyz Vibrato
					case 0x05:  // 05 xyz Tone Portamento + Volume Slide
					case 0x06:  // 06 xyz Vibrato + Volume Slide
					case 0x07:  // 07 xyz Tremolo
					case 0x0C:  // 0C xyy Set Volume
						ConvertModCommand(*m);
						break;
					case 0x09:  // 09 xxx Set Sample Offset
						m->command = CMD_OFFSET;
						m->param = static_cast<ModCommand::PARAM>(param >> 1);
						if(param >= 0x200)
						{
							m->volcmd = VOLCMD_OFFSET;
							m->vol >>= 1;
						}
						break;
					case 0x0A:  // 0A xyz Volume Slide + Fine Slide Up
					case 0x2A:  // 2A xyz Volume Slide + Fine Slide Down
						if(param < 0xFF)
						{
							m->command &= 0x0F;
							ConvertModCommand(*m);
						} else
						{
							m->command = CMD_MODCMDEX;
							m->param = static_cast<ModCommand::PARAM>(((command < 0x20) ? 0x10 : 0x20) | (param >> 8));
							if(param & 0xF0)
							{
								m->volcmd = VOLCMD_VOLSLIDEUP;
								m->vol = static_cast<ModCommand::VOL>((param >> 4) & 0x0F);
							} else
							{
								m->volcmd = VOLCMD_VOLSLIDEDOWN;
								m->vol = static_cast<ModCommand::VOL>(param & 0x0F);
							}
						}
						break;
					case 0x0B:  // 0B xxx Position Jump
					case 0x0F:  // 0F xxx Set Speed
						m->command = (command == 0x0B) ? CMD_POSITIONJUMP : CMD_SPEED;
						m->param = mpt::saturate_cast<ModCommand::PARAM>(param);
						break;
					case 0x0D:  // 0D xyy Pattern Break (not BCD-encoded like in MOD)
						m->command = CMD_PATTERNBREAK;
						if(m->param > 63)
							m->param = 0;
						break;
					case 0x10:  // 10 xxy Filter Control (not implemented in Digital Symphony)
					case 0x13:  // 13 xxy Glissando Control
					case 0x14:  // 14 xxy Set Vibrato Waveform
					case 0x15:  // 15 xxy Set Fine Tune
					case 0x17:  // 17 xxy Set Tremolo Waveform
					case 0x1F:  // 1F xxy Invert Loop
						m->command = CMD_MODCMDEX;
						m->param = (command << 4) | (m->param & 0x0F);
						break;
					case 0x16:  // 16 xxx Jump to Loop
					case 0x19:  // 19 xxx Retrig Note
					case 0x1C:  // 1C xxx Note Cut
					case 0x1D:  // 1D xxx Note Delay
					case 0x1E:  // 1E xxx Pattern Delay
						m->command = CMD_MODCMDEX;
						m->param = (command << 4) | static_cast<ModCommand::PARAM>(std::min(param, uint16(0x0F)));
						break;
					case 0x11:  // 11 xyy Fine Slide Up + Fine Volume Slide Up
					case 0x12:  // 12 xyy Fine Slide Down + Fine Volume Slide Up
					case 0x1A:  // 1A xyy Fine Slide Up + Fine Volume Slide Down
					case 0x1B:  // 1B xyy Fine Slide Down + Fine Volume Slide Down
						m->command = CMD_MODCMDEX;
						if(m->param & 0xFF)
						{
							m->param = static_cast<ModCommand::PARAM>(((command == 0x11 || command == 0x1A) ? 0x10 : 0x20) | (param & 0x0F));
							if(param & 0xF00)
								m->volcmd = (command >= 0x1A) ? VOLCMD_FINEVOLDOWN : VOLCMD_FINEVOLUP;
						} else
						{
							m->param = static_cast<ModCommand::PARAM>(((command >= 0x1A) ? 0xB0 : 0xA0) | (param >> 8));
						}
						break;
					case 0x2F:  // 2F xxx Set Tempo
						if(param > 0)
						{
							m->command = CMD_TEMPO;
							m->param = mpt::saturate_cast<ModCommand::PARAM>(std::max(8, param + 4) / 8);
#ifdef MODPLUG_TRACKER
							m->param = std::max(m->param, ModCommand::PARAM(0x20));
#endif
						} else
						{
							m->command = CMD_NONE;
						}
						break;
					case 0x2B:  // 2B xyy Line Jump
						m->command = CMD_PATTERNBREAK;
						for(CHANNELINDEX brkChn = 0; brkChn < m_nChannels; brkChn++)
						{
							ModCommand &cmd = *(m - chn + brkChn);
							if(cmd.command != CMD_NONE)
								continue;
							cmd.command = CMD_POSITIONJUMP;
							cmd.param = mpt::saturate_cast<ModCommand::PARAM>(pat);
						}
						break;
					case 0x30:  // 30 xxy Set Stereo
						m->command = CMD_PANNING8;
						if(param & 7)
						{
							static constexpr uint8 panning[8] = {0x00, 0x00, 0x2B, 0x56, 0x80, 0xAA, 0xD4, 0xFF};
							m->param = panning[param & 7];
						} else if((param >> 4) != 0x80)
						{
							m->param = static_cast<ModCommand::PARAM>(param >> 4);
							if(m->param < 0x80)
								m->param += 0x80;
							else
								m->param = 0xFF - m->param;
						} else
						{
							m->command = CMD_NONE;
						}
						break;
					case 0x32:  // 32 xxx Unset Sample Repeat
						m->command = CMD_NONE;
						m->param = 0;
						if(m->note == NOTE_NONE)
							m->note = NOTE_KEYOFF;
						else
							m->command = CMD_KEYOFF;
						break;
					case 0x31:  // 31 xxx Song Upcall
					default:
						m->command = CMD_NONE;
						break;
				}
			}
		}
	}

	for(SAMPLEINDEX smp = 1; smp <= m_nSamples; smp++)
	{
		file.ReadString<mpt::String::maybeNullTerminated>(m_szNames[smp], sampleNameLength[smp] & 0x3F);

		if(sampleNameLength[smp] & 0x80)
			continue;

		ModSample &mptSmp = Samples[smp];
		mptSmp.nSustainStart = file.ReadUint24LE() << 1;
		if(const auto loopLen = file.ReadUint24LE() << 1; loopLen > 2)
		{
			mptSmp.nSustainEnd = mptSmp.nSustainStart + loopLen;
			mptSmp.uFlags.set(CHN_SUSTAINLOOP);
		}
		mptSmp.nVolume = std::min(file.ReadUint8(), uint8(64)) * 4u;
		mptSmp.nFineTune = MOD2XMFineTune(file.ReadUint8());
		mptSmp.Set16BitCuePoints();

		if(!mptSmp.nLength)
			continue;

		const uint8 packingType = file.ReadUint8();
		switch(packingType)
		{
		case 0:  // Modified u-Law
			if(loadFlags & loadSampleData)
			{
				std::vector<std::byte> sampleData;
				if(!file.CanRead(mptSmp.nLength))
					return false;
				file.ReadVector(sampleData, mptSmp.nLength);
				for(auto &b : sampleData)
				{
					uint8 v = mpt::byte_cast<uint8>(b);
					v = (v << 7) | (static_cast<uint8>(~v) >> 1);
					b = mpt::byte_cast<std::byte>(v);
				}

				FileReader sampleDataFile = FileReader(mpt::as_span(sampleData));
				SampleIO(
					SampleIO::_16bit,
					SampleIO::mono,
					SampleIO::littleEndian,
					SampleIO::uLaw)
					.ReadSample(mptSmp, sampleDataFile);
			} else
			{
				file.Skip(mptSmp.nLength);
			}
			break;
		case 1:  // 13-bit LZW applied to linear sample data differences
			{
				std::vector<std::byte> sampleData;
				try
				{
					sampleData = DecompressDSymLZW(file, mptSmp.nLength);
				} catch(const BitReader::eof &)
				{
					return false;
				}
				if(!(loadFlags & loadSampleData))
					break;
				FileReader sampleDataFile = FileReader(mpt::as_span(sampleData));
				SampleIO(
					SampleIO::_8bit,
					SampleIO::mono,
					SampleIO::littleEndian,
					SampleIO::deltaPCM)
					.ReadSample(mptSmp, sampleDataFile);
			}
			break;
		case 2:  // 8-bit signed
		case 3:  // 16-bit signed
			if(loadFlags & loadSampleData)
			{
				SampleIO(
					(packingType == 2) ? SampleIO::_8bit : SampleIO::_16bit,
					SampleIO::mono,
					SampleIO::littleEndian,
					SampleIO::signedPCM)
					.ReadSample(mptSmp, file);
			} else
			{
				file.Skip(mptSmp.nLength * (packingType - 1));
			}
			break;
		case 4:  // Sigma-Delta compression applied to linear sample differences
		case 5:  // Sigma-Delta compression applied to logarithmic sample differences
			{
				std::vector<std::byte> sampleData;
				try
				{
					sampleData = DecompressDSymSigmaDelta(file, mptSmp.nLength);
				} catch(const BitReader::eof &)
				{
					return false;
				}
				if(!(loadFlags & loadSampleData))
					break;
				if(packingType == 5)
				{
					static constexpr uint8 xorMask[] = {0x00, 0x7F};
					for(auto &b : sampleData)
					{
						uint8 v = mpt::byte_cast<uint8>(b);
						v ^= xorMask[v >> 7];
						b = mpt::byte_cast<std::byte>(v);
					}
				}

				FileReader sampleDataFile = FileReader(mpt::as_span(sampleData));
				SampleIO(
					(packingType == 5) ? SampleIO::_16bit : SampleIO::_8bit,
					SampleIO::mono,
					SampleIO::littleEndian,
					(packingType == 5) ? SampleIO::uLaw : SampleIO::unsignedPCM)
					.ReadSample(mptSmp, sampleDataFile);
			}
			break;
		default:
			return false;
		}
	}

	if(const uint32 infoLen = fileHeader.infoLenLo | (fileHeader.infoLenHi << 16); infoLen > 0)
	{
		std::vector<std::byte> infoData;
		if(!ReadDSymChunk(file, infoData, infoLen))
			return false;
		FileReader infoChunk = FileReader(mpt::as_span(infoData));
		m_songMessage.Read(infoChunk, infoLen, SongMessage::leLF);
	}

	m_modFormat.formatName = MPT_UFORMAT("Digital Symphony v{}")(fileHeader.version);
	m_modFormat.type = U_("dsym");  // RISC OS doesn't use file extensions but this is a common abbreviation used for this tracker
	m_modFormat.madeWithTracker = U_("Digital Symphony");
	m_modFormat.charset = mpt::Charset::RISC_OS;

	return true;
}


OPENMPT_NAMESPACE_END