1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
/*
* TinyFFT.cpp
* -----------
* Purpose: A simple FFT implementation for power-of-two FFTs
* Notes : This is a C++ adaption of Ryuhei Mori's BSD 2-clause licensed TinyFFT
* available from https://github.com/ryuhei-mori/tinyfft
* Authors: Ryuhei Mori
* OpenMPT Devs
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#include "TinyFFT.h"
OPENMPT_NAMESPACE_BEGIN
void TinyFFT::GenerateTwiddleFactors(uint32 i, uint32 b, std::complex<double> z)
{
if(b == 0)
w[i] = z;
else
{
GenerateTwiddleFactors(i, b >> 1, z);
GenerateTwiddleFactors(i | b, b >> 1, z * w[b]);
}
}
TinyFFT::TinyFFT(const uint32 fftSize)
: w(std::size_t(1) << (fftSize - 1))
, k(fftSize)
{
const uint32 m = 1 << k;
constexpr double PI2_ = 6.28318530717958647692;
const double arg = -PI2_ / m;
for(uint32 i = 1, j = m / 4; j; i <<= 1, j >>= 1)
{
w[i] = std::exp(I * (arg * j));
}
GenerateTwiddleFactors(0, m / 4, 1);
}
uint32 TinyFFT::Size() const noexcept
{
return 1 << k;
}
// Computes in-place FFT of size 2^k of A, result is in bit-reversed order.
void TinyFFT::FFT(std::vector<std::complex<double>> &A) const
{
MPT_ASSERT(A.size() == (std::size_t(1) << k));
const uint32 m = 1 << k;
uint32 u = 1;
uint32 v = m / 4;
if(k & 1)
{
for(uint32 j = 0; j < m / 2; j++)
{
auto Ajv = A[j + (m / 2)];
A[j + (m / 2)] = A[j] - Ajv;
A[j] += Ajv;
}
u <<= 1;
v >>= 1;
}
for(uint32 i = k & ~1; i > 0; i -= 2)
{
for(uint32 jh = 0; jh < u; jh++)
{
auto wj = w[jh << 1];
auto wj2 = w[jh];
auto wj3 = wj2 * wj;
for(uint32 j = jh << i, je = j + v; j < je; j++)
{
auto tmp0 = A[j];
auto tmp1 = wj * A[j + v];
auto tmp2 = wj2 * A[j + 2 * v];
auto tmp3 = wj3 * A[j + 3 * v];
auto ttmp0 = tmp0 + tmp2;
auto ttmp2 = tmp0 - tmp2;
auto ttmp1 = tmp1 + tmp3;
auto ttmp3 = -I * (tmp1 - tmp3);
A[j] = ttmp0 + ttmp1;
A[j + v] = ttmp0 - ttmp1;
A[j + 2 * v] = ttmp2 + ttmp3;
A[j + 3 * v] = ttmp2 - ttmp3;
}
}
u <<= 2;
v >>= 2;
}
}
// Computes in-place IFFT of size 2^k of A, input is expected to be in bit-reversed order.
void TinyFFT::IFFT(std::vector<std::complex<double>> &A) const
{
MPT_ASSERT(A.size() == (std::size_t(1) << k));
const uint32 m = 1 << k;
uint32 u = m / 4;
uint32 v = 1;
for(uint32 i = 2; i <= k; i += 2)
{
for(uint32 jh = 0; jh < u; jh++)
{
auto wj = std::conj(w[jh << 1]);
auto wj2 = std::conj(w[jh]);
auto wj3 = wj2 * wj;
for(uint32 j = jh << i, je = j + v; j < je; j++)
{
auto tmp0 = A[j];
auto tmp1 = A[j + v];
auto tmp2 = A[j + 2 * v];
auto tmp3 = A[j + 3 * v];
auto ttmp0 = tmp0 + tmp1;
auto ttmp1 = tmp0 - tmp1;
auto ttmp2 = tmp2 + tmp3;
auto ttmp3 = I * (tmp2 - tmp3);
A[j] = ttmp0 + ttmp2;
A[j + v] = wj * (ttmp1 + ttmp3);
A[j + 2 * v] = wj2 * (ttmp0 - ttmp2);
A[j + 3 * v] = wj3 * (ttmp1 - ttmp3);
}
}
u >>= 2;
v <<= 2;
}
if(k & 1)
{
for(uint32 j = 0; j < m / 2; j++)
{
auto Ajv = A[j + (m / 2)];
A[j + (m / 2)] = A[j] - Ajv;
A[j] += Ajv;
}
}
}
void TinyFFT::Normalize(std::vector<std::complex<double>> &data)
{
const double s = static_cast<double>(data.size());
for(auto &v : data)
v /= s;
}
OPENMPT_NAMESPACE_END
|