aboutsummaryrefslogtreecommitdiff
path: root/Src/external_dependencies/openmpt-trunk/soundlib/modsmp_ctrl.cpp
blob: 562d7fb695e42b99f7dbceb308386fcb34fe1427 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
/*
 * modsmp_ctrl.cpp
 * ---------------
 * Purpose: Basic sample editing code.
 * Notes  : This is a legacy namespace. Some of this stuff is not required in libopenmpt (but stuff in soundlib/ still depends on it). The rest could be merged into struct ModSample.
 * Authors: OpenMPT Devs
 * The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
 */


#include "stdafx.h"
#include "modsmp_ctrl.h"
#include "AudioCriticalSection.h"
#include "Sndfile.h"

OPENMPT_NAMESPACE_BEGIN

namespace ctrlSmp
{

void ReplaceSample(ModSample &smp, void *pNewSample, const SmpLength newLength, CSoundFile &sndFile)
{
	void * const pOldSmp = smp.samplev();
	FlagSet<ChannelFlags> setFlags, resetFlags;

	setFlags.set(CHN_16BIT, smp.uFlags[CHN_16BIT]);
	resetFlags.set(CHN_16BIT, !smp.uFlags[CHN_16BIT]);

	setFlags.set(CHN_STEREO, smp.uFlags[CHN_STEREO]);
	resetFlags.set(CHN_STEREO, !smp.uFlags[CHN_STEREO]);

	CriticalSection cs;

	ctrlChn::ReplaceSample(sndFile, smp, pNewSample, newLength, setFlags, resetFlags);
	smp.pData.pSample = pNewSample;
	smp.nLength = newLength;
	ModSample::FreeSample(pOldSmp);
}


// Propagate loop point changes to player
bool UpdateLoopPoints(const ModSample &smp, CSoundFile &sndFile)
{
	if(!smp.HasSampleData())
		return false;

	CriticalSection cs;

	// Update channels with new loop values
	for(auto &chn : sndFile.m_PlayState.Chn) if((chn.pModSample == &smp) && chn.nLength != 0)
	{
		bool looped = false, bidi = false;

		if(smp.nSustainStart < smp.nSustainEnd && smp.nSustainEnd <= smp.nLength && smp.uFlags[CHN_SUSTAINLOOP] && !chn.dwFlags[CHN_KEYOFF])
		{
			// Sustain loop is active
			chn.nLoopStart = smp.nSustainStart;
			chn.nLoopEnd = smp.nSustainEnd;
			chn.nLength = smp.nSustainEnd;
			looped = true;
			bidi = smp.uFlags[CHN_PINGPONGSUSTAIN];
		} else if(smp.nLoopStart < smp.nLoopEnd && smp.nLoopEnd <= smp.nLength && smp.uFlags[CHN_LOOP])
		{
			// Normal loop is active
			chn.nLoopStart = smp.nLoopStart;
			chn.nLoopEnd = smp.nLoopEnd;
			chn.nLength = smp.nLoopEnd;
			looped = true;
			bidi = smp.uFlags[CHN_PINGPONGLOOP];
		}
		chn.dwFlags.set(CHN_LOOP, looped);
		chn.dwFlags.set(CHN_PINGPONGLOOP, looped && bidi);

		if(chn.position.GetUInt() > chn.nLength)
		{
			chn.position.Set(chn.nLoopStart);
			chn.dwFlags.reset(CHN_PINGPONGFLAG);
		}
		if(!bidi)
		{
			chn.dwFlags.reset(CHN_PINGPONGFLAG);
		}
		if(!looped)
		{
			chn.nLength = smp.nLength;
		}
	}

	return true;
}


template <class T>
static void ReverseSampleImpl(T *pStart, const SmpLength length)
{
	for(SmpLength i = 0; i < length / 2; i++)
	{
		std::swap(pStart[i], pStart[length - 1 - i]);
	}
}

// Reverse sample data
bool ReverseSample(ModSample &smp, SmpLength start, SmpLength end, CSoundFile &sndFile)
{
	if(!smp.HasSampleData()) return false;
	if(end == 0 || start > smp.nLength || end > smp.nLength)
	{
		start = 0;
		end   = smp.nLength;
	}

	if(end - start < 2) return false;

	static_assert(MaxSamplingPointSize <= 4);
	if(smp.GetBytesPerSample() == 4)  // 16 bit stereo
		ReverseSampleImpl(static_cast<int32 *>(smp.samplev()) + start, end - start);
	else if(smp.GetBytesPerSample() == 2)  // 16 bit mono / 8 bit stereo
		ReverseSampleImpl(static_cast<int16 *>(smp.samplev()) + start, end - start);
	else if(smp.GetBytesPerSample() == 1)  // 8 bit mono
		ReverseSampleImpl(static_cast<int8 *>(smp.samplev()) + start, end - start);
	else
		return false;

	smp.PrecomputeLoops(sndFile, false);
	return true;
}


template <class T>
static void InvertSampleImpl(T *pStart, const SmpLength length)
{
	for(SmpLength i = 0; i < length; i++)
	{
		pStart[i] = ~pStart[i];
	}
}

// Invert sample data (flip by 180 degrees)
bool InvertSample(ModSample &smp, SmpLength start, SmpLength end, CSoundFile &sndFile)
{
	if(!smp.HasSampleData()) return false;
	if(end == 0 || start > smp.nLength || end > smp.nLength)
	{
		start = 0;
		end = smp.nLength;
	}
	start *= smp.GetNumChannels();
	end *= smp.GetNumChannels();
	if(smp.GetElementarySampleSize() == 2)
		InvertSampleImpl(smp.sample16() + start, end - start);
	else if(smp.GetElementarySampleSize() == 1)
		InvertSampleImpl(smp.sample8() + start, end - start);
	else
		return false;

	smp.PrecomputeLoops(sndFile, false);
	return true;
}


template <class T>
static void XFadeSampleImpl(const T *srcIn, const T *srcOut, T *output, const SmpLength fadeLength, double e)
{
	const double length = 1.0 / static_cast<double>(fadeLength);
	for(SmpLength i = 0; i < fadeLength; i++, srcIn++, srcOut++, output++)
	{
		double fact1 = std::pow(i * length, e);
		double fact2 = std::pow((fadeLength - i) * length, e);
		int32 val = static_cast<int32>(
			static_cast<double>(*srcIn) * fact1 +
			static_cast<double>(*srcOut) * fact2);
		*output = mpt::saturate_cast<T>(val);
	}
}

// X-Fade sample data to create smooth loop transitions
bool XFadeSample(ModSample &smp, SmpLength fadeLength, int fadeLaw, bool afterloopFade, bool useSustainLoop, CSoundFile &sndFile)
{
	if(!smp.HasSampleData()) return false;
	const SmpLength loopStart = useSustainLoop ? smp.nSustainStart : smp.nLoopStart;
	const SmpLength loopEnd = useSustainLoop ? smp.nSustainEnd : smp.nLoopEnd;
	
	if(loopEnd <= loopStart || loopEnd > smp.nLength) return false;
	if(loopStart < fadeLength) return false;

	const SmpLength start = (loopStart - fadeLength) * smp.GetNumChannels();
	const SmpLength end = (loopEnd - fadeLength) * smp.GetNumChannels();
	const SmpLength afterloopStart = loopStart * smp.GetNumChannels();
	const SmpLength afterloopEnd = loopEnd * smp.GetNumChannels();
	const SmpLength afterLoopLength = std::min(smp.nLength - loopEnd, fadeLength) * smp.GetNumChannels();
	fadeLength *= smp.GetNumChannels();

	// e=0.5: constant power crossfade (for uncorrelated samples), e=1.0: constant volume crossfade (for perfectly correlated samples)
	const double e = 1.0 - fadeLaw / 200000.0;

	if(smp.GetElementarySampleSize() == 2)
	{
		XFadeSampleImpl(smp.sample16() + start, smp.sample16() + end, smp.sample16() + end, fadeLength, e);
		if(afterloopFade) XFadeSampleImpl(smp.sample16() + afterloopEnd, smp.sample16() + afterloopStart, smp.sample16() + afterloopEnd, afterLoopLength, e);
	} else if(smp.GetElementarySampleSize() == 1)
	{
		XFadeSampleImpl(smp.sample8() + start, smp.sample8() + end, smp.sample8() + end, fadeLength, e);
		if(afterloopFade) XFadeSampleImpl(smp.sample8() + afterloopEnd, smp.sample8() + afterloopStart, smp.sample8() + afterloopEnd, afterLoopLength, e);
	} else
		return false;

	smp.PrecomputeLoops(sndFile, true);
	return true;
}


template <class T>
static void ConvertStereoToMonoMixImpl(T *pDest, const SmpLength length)
{
	const T *pEnd = pDest + length;
	for(T *pSource = pDest; pDest != pEnd; pDest++, pSource += 2)
	{
		*pDest = static_cast<T>(mpt::rshift_signed(pSource[0] + pSource[1] + 1, 1));
	}
}


template <class T>
static void ConvertStereoToMonoOneChannelImpl(T *pDest, const T *pSource, const SmpLength length)
{
	for(const T *pEnd = pDest + length; pDest != pEnd; pDest++, pSource += 2)
	{
		*pDest = *pSource;
	}
}


// Convert a multichannel sample to mono (currently only implemented for stereo)
bool ConvertToMono(ModSample &smp, CSoundFile &sndFile, StereoToMonoMode conversionMode)
{
	if(!smp.HasSampleData() || smp.GetNumChannels() != 2) return false;

	// Note: Sample is overwritten in-place! Unused data is not deallocated!
	if(conversionMode == mixChannels)
	{
		if(smp.GetElementarySampleSize() == 2)
			ConvertStereoToMonoMixImpl(smp.sample16(), smp.nLength);
		else if(smp.GetElementarySampleSize() == 1)
			ConvertStereoToMonoMixImpl(smp.sample8(), smp.nLength);
		else
			return false;
	} else
	{
		if(conversionMode == splitSample)
		{
			conversionMode = onlyLeft;
		}
		if(smp.GetElementarySampleSize() == 2)
			ConvertStereoToMonoOneChannelImpl(smp.sample16(), smp.sample16() + (conversionMode == onlyLeft ? 0 : 1), smp.nLength);
		else if(smp.GetElementarySampleSize() == 1)
			ConvertStereoToMonoOneChannelImpl(smp.sample8(), smp.sample8() + (conversionMode == onlyLeft ? 0 : 1), smp.nLength);
		else
			return false;
	}

	CriticalSection cs;
	smp.uFlags.reset(CHN_STEREO);
	for(auto &chn : sndFile.m_PlayState.Chn)
	{
		if(chn.pModSample == &smp)
		{
			chn.dwFlags.reset(CHN_STEREO);
		}
	}

	smp.PrecomputeLoops(sndFile, false);
	return true;
}


template <class T>
static void SplitStereoImpl(void *destL, void *destR, const T *source, SmpLength length)
{
	T *l = static_cast<T *>(destL), *r = static_cast<T*>(destR);
	while(length--)
	{
		*(l++) = source[0];
		*(r++) = source[1];
		source += 2;
	}
}


// Converts a stereo sample into two mono samples. Source sample will not be deleted.
bool SplitStereo(const ModSample &source, ModSample &left, ModSample &right, CSoundFile &sndFile)
{
	if(!source.HasSampleData() || source.GetNumChannels() != 2 || &left == &right)
		return false;
	const bool sourceIsLeft = &left == &source, sourceIsRight = &right == &source;
	if(left.HasSampleData() && !sourceIsLeft)
		return false;
	if(right.HasSampleData() && !sourceIsRight)
		return false;

	void *leftData  = sourceIsLeft ? left.samplev() : ModSample::AllocateSample(source.nLength, source.GetElementarySampleSize());
	void *rightData = sourceIsRight ? right.samplev() : ModSample::AllocateSample(source.nLength, source.GetElementarySampleSize());
	if(!leftData || !rightData)
	{
		if(!sourceIsLeft)
			ModSample::FreeSample(leftData);
		if(!sourceIsRight)
			ModSample::FreeSample(rightData);
		return false;
	}

	if(source.GetElementarySampleSize() == 2)
		SplitStereoImpl(leftData, rightData, source.sample16(), source.nLength);
	else if(source.GetElementarySampleSize() == 1)
		SplitStereoImpl(leftData, rightData, source.sample8(), source.nLength);
	else
		MPT_ASSERT_NOTREACHED();

	CriticalSection cs;
	left = source;
	left.uFlags.reset(CHN_STEREO);
	left.pData.pSample = leftData;

	right = source;
	right.uFlags.reset(CHN_STEREO);
	right.pData.pSample = rightData;

	for(auto &chn : sndFile.m_PlayState.Chn)
	{
		if(chn.pModSample == &left || chn.pModSample == &right)
			chn.dwFlags.reset(CHN_STEREO);
	}

	left.PrecomputeLoops(sndFile, false);
	right.PrecomputeLoops(sndFile, false);
	return true;
}


template <class T>
static void ConvertMonoToStereoImpl(const T *MPT_RESTRICT src, T *MPT_RESTRICT dst, SmpLength length)
{
	while(length--)
	{
		dst[0] = *src;
		dst[1] = *src;
		dst += 2;
		src++;
	}
}


// Convert a multichannel sample to mono (currently only implemented for stereo)
bool ConvertToStereo(ModSample &smp, CSoundFile &sndFile)
{
	if(!smp.HasSampleData() || smp.GetNumChannels() != 1) return false;

	void *newSample = ModSample::AllocateSample(smp.nLength, smp.GetBytesPerSample() * 2);
	if(newSample == nullptr)
	{
		return 0;
	}

	if(smp.GetElementarySampleSize() == 2)
		ConvertMonoToStereoImpl(smp.sample16(), (int16 *)newSample, smp.nLength);
	else if(smp.GetElementarySampleSize() == 1)
		ConvertMonoToStereoImpl(smp.sample8(), (int8 *)newSample, smp.nLength);
	else
		return false;

	CriticalSection cs;
	smp.uFlags.set(CHN_STEREO);
	ReplaceSample(smp, newSample, smp.nLength, sndFile);

	smp.PrecomputeLoops(sndFile, false);
	return true;
}


} // namespace ctrlSmp



namespace ctrlChn
{

void ReplaceSample( CSoundFile &sndFile,
					const ModSample &sample,
					const void * const pNewSample,
					const SmpLength newLength,
					FlagSet<ChannelFlags> setFlags,
					FlagSet<ChannelFlags> resetFlags)
{
	const bool periodIsFreq = sndFile.PeriodsAreFrequencies();
	for(auto &chn : sndFile.m_PlayState.Chn)
	{
		if(chn.pModSample == &sample)
		{
			if(chn.pCurrentSample != nullptr)
				chn.pCurrentSample = pNewSample;
			if(chn.position.GetUInt() > newLength)
				chn.position.Set(0);
			if(chn.nLength > 0)
				LimitMax(chn.nLength, newLength);
			if(chn.InSustainLoop())
			{
				chn.nLoopStart = sample.nSustainStart;
				chn.nLoopEnd = sample.nSustainEnd;
			} else
			{
				chn.nLoopStart = sample.nLoopStart;
				chn.nLoopEnd = sample.nLoopEnd;
			}
			chn.dwFlags.set(setFlags);
			chn.dwFlags.reset(resetFlags);
			if(chn.nC5Speed && sample.nC5Speed && !sndFile.UseFinetuneAndTranspose())
			{
				if(periodIsFreq)
					chn.nPeriod = Util::muldivr_unsigned(chn.nPeriod, sample.nC5Speed, chn.nC5Speed);
				else
					chn.nPeriod = Util::muldivr_unsigned(chn.nPeriod, chn.nC5Speed, sample.nC5Speed);
			}
			chn.nC5Speed = sample.nC5Speed;
		}
	}
}

} // namespace ctrlChn


OPENMPT_NAMESPACE_END