1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
# CV_EVCHEB -- Procedure to evaluate a Chebyshev polynomial assuming that
# the coefficients have been calculated.
procedure dcv_evcheb (coeff, x, yfit, npts, order, k1, k2)
double coeff[ARB] # 1D array of coefficients
double x[npts] # x values of points to be evaluated
double yfit[npts] # the fitted points
int npts # number of points to be evaluated
int order # order of the polynomial, 1 = constant
double k1, k2 # normalizing constants
int i
pointer sx, pn, pnm1, pnm2
pointer sp
double c1, c2
begin
# fit a constant
if (order == 1) {
call amovkd (coeff[1], yfit, npts)
return
}
# fit a linear function
c1 = k2 * coeff[2]
c2 = c1 * k1 + coeff[1]
call altmd (x, yfit, npts, c1, c2)
if (order == 2)
return
# allocate temporary space
call smark (sp)
call salloc (sx, npts, TY_DOUBLE)
call salloc (pn, npts, TY_DOUBLE)
call salloc (pnm1, npts, TY_DOUBLE)
call salloc (pnm2, npts, TY_DOUBLE)
# a higher order polynomial
call amovkd (double(1.0), Memd[pnm2], npts)
call altad (x, Memd[sx], npts, k1, k2)
call amovd (Memd[sx], Memd[pnm1], npts)
call amulkd (Memd[sx], double(2.0), Memd[sx], npts)
do i = 3, order {
call amuld (Memd[sx], Memd[pnm1], Memd[pn], npts)
call asubd (Memd[pn], Memd[pnm2], Memd[pn], npts)
if (i < order) {
call amovd (Memd[pnm1], Memd[pnm2], npts)
call amovd (Memd[pn], Memd[pnm1], npts)
}
call amulkd (Memd[pn], coeff[i], Memd[pn], npts)
call aaddd (yfit, Memd[pn], yfit, npts)
}
# free temporary space
call sfree (sp)
end
# CV_EVLEG -- Procedure to evaluate a Legendre polynomial assuming that
# the coefficients have been calculated.
procedure dcv_evleg (coeff, x, yfit, npts, order, k1, k2)
double coeff[ARB] # 1D array of coefficients
double x[npts] # x values of points to be evaluated
double yfit[npts] # the fitted points
int npts # number of data points
int order # order of the polynomial, 1 = constant
double k1, k2 # normalizing constants
int i
pointer sx, pn, pnm1, pnm2
pointer sp
double ri, ri1, ri2
begin
# fit a constant
if (order == 1) {
call amovkd (coeff[1], yfit, npts)
return
}
# fit a linear function
ri1 = k2 * coeff[2]
ri2 = ri1 * k1 + coeff[1]
call altmd (x, yfit, npts, ri1, ri2)
if (order == 2)
return
# allocate temporary space
call smark (sp)
call salloc (sx, npts, TY_DOUBLE)
call salloc (pn, npts, TY_DOUBLE)
call salloc (pnm1, npts, TY_DOUBLE)
call salloc (pnm2, npts, TY_DOUBLE)
# a higher order polynomial
call amovkd (double(1.0), Memd[pnm2], npts)
call altad (x, Memd[sx], npts, k1, k2)
call amovd (Memd[sx], Memd[pnm1], npts)
do i = 3, order {
ri = i
ri1 = (double(2.0) * ri - double(3.0)) / (ri - double(1.0))
ri2 = - (ri - double(2.0)) / (ri - double(1.0))
call amuld (Memd[sx], Memd[pnm1], Memd[pn], npts)
call awsud (Memd[pn], Memd[pnm2], Memd[pn], npts, ri1, ri2)
if (i < order) {
call amovd (Memd[pnm1], Memd[pnm2], npts)
call amovd (Memd[pn], Memd[pnm1], npts)
}
call amulkd (Memd[pn], coeff[i], Memd[pn], npts)
call aaddd (yfit, Memd[pn], yfit, npts)
}
# free temporary space
call sfree (sp)
end
# CV_EVSPLINE1 -- Procedure to evaluate a piecewise linear spline function
# assuming that the coefficients have been calculated.
procedure dcv_evspline1 (coeff, x, yfit, npts, npieces, k1, k2)
double coeff[ARB] # array of coefficients
double x[npts] # array of x values
double yfit[npts] # array of fitted values
int npts # number of data points
int npieces # number of fitted points minus 1
double k1, k2 # normalizing constants
int j
pointer sx, tx, azindex, aindex, index
pointer sp
begin
# allocate the required space
call smark (sp)
call salloc (sx, npts, TY_DOUBLE)
call salloc (tx, npts, TY_DOUBLE)
call salloc (index, npts, TY_INT)
# calculate the index of the first non-zero coefficient
# for each point
call altad (x, Memd[sx], npts, k1, k2)
call achtdi (Memd[sx], Memi[index], npts)
call aminki (Memi[index], npieces, Memi[index], npts)
# transform sx to range 0 to 1
azindex = sx - 1
do j = 1, npts {
aindex = azindex + j
Memd[aindex] = max (double(0.0), min (double(1.0), Memd[aindex] -
Memi[index+j-1]))
Memd[tx+j-1] = max (double(0.0), min (double(1.0), double(1.0) -
Memd[aindex]))
}
# calculate yfit using the two non-zero basis function
do j = 1, npts
yfit[j] = Memd[tx+j-1] * coeff[1+Memi[index+j-1]] +
Memd[sx+j-1] * coeff[2+Memi[index+j-1]]
# free space
call sfree (sp)
end
# CV_EVSPLINE3 -- Procedure to evaluate the cubic spline assuming that
# the coefficients of the fit are known.
procedure dcv_evspline3 (coeff, x, yfit, npts, npieces, k1, k2)
double coeff[ARB] # array of coeffcients
double x[npts] # array of x values
double yfit[npts] # array of fitted values
int npts # number of data points
int npieces # number of polynomial pieces
double k1, k2 # normalizing constants
int i, j
pointer sx, tx, temp, index, sp
begin
# allocate the required space
call smark (sp)
call salloc (sx, npts, TY_DOUBLE)
call salloc (tx, npts, TY_DOUBLE)
call salloc (temp, npts, TY_DOUBLE)
call salloc (index, npts, TY_INT)
# calculate to which coefficients the x values contribute to
call altad (x, Memd[sx], npts, k1, k2)
call achtdi (Memd[sx], Memi[index], npts)
call aminki (Memi[index], npieces, Memi[index], npts)
# transform sx to range 0 to 1
do j = 1, npts {
Memd[sx+j-1] = max (double(0.0), min (double(1.0), Memd[sx+j-1] -
Memi[index+j-1]))
Memd[tx+j-1] = max (double(0.0), min (double(1.0), double(1.0) -
Memd[sx+j-1]))
}
# calculate yfit using the four non-zero basis function
call aclrd (yfit, npts)
do i = 1, 4 {
switch (i) {
case 1:
call apowkd (Memd[tx], 3, Memd[temp], npts)
case 2:
do j = 1, npts {
Memd[temp+j-1] = double(1.0) + Memd[tx+j-1] *
(double(3.0) + Memd[tx+j-1] * (double(3.0) -
double(3.0) * Memd[tx+j-1]))
}
case 3:
do j = 1, npts {
Memd[temp+j-1] = double(1.0) + Memd[sx+j-1] *
(double(3.0) + Memd[sx+j-1] * (double(3.0) -
double(3.0) * Memd[sx+j-1]))
}
case 4:
call apowkd (Memd[sx], 3, Memd[temp], npts)
}
do j = 1, npts
Memd[temp+j-1] = Memd[temp+j-1] * coeff[i+Memi[index+j-1]]
call aaddd (yfit, Memd[temp], yfit, npts)
}
# free space
call sfree (sp)
end
|