1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
SUBROUTINE slMAPA (EQ, DATE, AMPRMS)
*+
* - - - - - -
* M A P A
* - - - - - -
*
* Compute star-independent parameters in preparation for
* conversions between mean place and geocentric apparent place.
*
* The parameters produced by this routine are required in the
* parallax, light deflection, aberration, and precession/nutation
* parts of the mean/apparent transformations.
*
* The reference frames and timescales used are post IAU 1976.
*
* Given:
* EQ d epoch of mean equinox to be used (Julian)
* DATE d TDB (JD-2400000.5)
*
* Returned:
* AMPRMS d(21) star-independent mean-to-apparent parameters:
*
* (1) time interval for proper motion (Julian years)
* (2-4) barycentric position of the Earth (AU)
* (5-7) heliocentric direction of the Earth (unit vector)
* (8) (grav rad Sun)*2/(Sun-Earth distance)
* (9-11) ABV: barycentric Earth velocity in units of c
* (12) sqrt(1-v**2) where v=modulus(ABV)
* (13-21) precession/nutation (3,3) matrix
*
* References:
* 1984 Astronomical Almanac, pp B39-B41.
* (also Lederle & Schwan, Astron. Astrophys. 134,
* 1-6, 1984)
*
* Notes:
*
* 1) For DATE, the distinction between the required TDB and TT
* is always negligible. Moreover, for all but the most
* critical applications UTC is adequate.
*
* 2) The vectors AMPRMS(2-4) and AMPRMS(5-7) are referred to
* the mean equinox and equator of epoch EQ.
*
* 3) The parameters AMPRMS produced by this routine are used by
* slAMPQ, slMAPQ and slMAPZ.
*
* 4) The accuracy is sub-milliarcsecond, limited by the
* precession-nutation model (IAU 1976 precession, Shirai &
* Fukushima 2001 forced nutation and precession corrections).
*
* 5) A further limit to the accuracy of routines using the parameter
* array AMPRMS is imposed by the routine slEVP, used here to
* compute the Earth position and velocity by the methods of
* Stumpff. The maximum error in the resulting aberration
* corrections is about 0.3 milliarcsecond.
*
* Called:
* slEPJ MDJ to Julian epoch
* slEVP earth position & velocity
* slDVN normalize vector
* slPRNU precession/nutation matrix
*
* P.T.Wallace Starlink 24 October 2003
*
* Copyright (C) 2003 Rutherford Appleton Laboratory
*
* License:
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program (see SLA_CONDITIONS); if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301 USA
*
* Copyright (C) 1995 Association of Universities for Research in Astronomy Inc.
*-
IMPLICIT NONE
DOUBLE PRECISION EQ,DATE,AMPRMS(21)
* Light time for 1 AU (sec)
DOUBLE PRECISION CR
PARAMETER (CR=499.004782D0)
* Gravitational radius of the Sun x 2 (2*mu/c**2, AU)
DOUBLE PRECISION GR2
PARAMETER (GR2=2D0*9.87063D-9)
INTEGER I
DOUBLE PRECISION EBD(3),EHD(3),EH(3),E,VN(3),VM
DOUBLE PRECISION slEPJ
* Time interval for proper motion correction
AMPRMS(1) = slEPJ(DATE)-EQ
* Get Earth barycentric and heliocentric position and velocity
CALL slEVP(DATE,EQ,EBD,AMPRMS(2),EHD,EH)
* Heliocentric direction of earth (normalized) and modulus
CALL slDVN(EH,AMPRMS(5),E)
* Light deflection parameter
AMPRMS(8) = GR2/E
* Aberration parameters
DO I=1,3
AMPRMS(I+8) = EBD(I)*CR
END DO
CALL slDVN(AMPRMS(9),VN,VM)
AMPRMS(12) = SQRT(1D0-VM*VM)
* Precession/nutation matrix
CALL slPRNU(EQ,DATE,AMPRMS(13))
END
|