1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
include <mach.h>
include <imhdr.h>
include <error.h>
include "rrcopy.h"
# RC_UP_12 -- Unpack 12-bit unsigned integers from a stream of bits.
# Each output integer word contains successive 12-bit increments
# of the input bit stream in the least significant bit positions.
# It is assummed that the initial_bit_offset is the first bit of a
# Cyber 60-bit word containing 5 packed 12-bit pixels, the first pixel
# in the highest 12 bits.
procedure rc_up_12 (input, initial_bit_offset, output, npix_unpk)
char input[ARB]
int output[npix_unpk], npix_unpk
int initial_bit_offset, nbits, n, nn, bit_offset
int npix_word, ncyb_words, index
int bitupk()
begin
nbits = 12
npix_word = 5
if (mod (npix_unpk, npix_word) == 0)
ncyb_words = (npix_unpk) / npix_word
else
call error (0, "Incorrect number of pixels to be unpacked")
index = 1
do n = 1, ncyb_words {
bit_offset = initial_bit_offset + (n * 60)
do nn = 1, npix_word {
bit_offset = bit_offset - nbits
output[index] = bitupk (input, bit_offset, nbits)
if (output[index] == 7777B)
output[index] = BLANK
index = index + 1
}
}
end
# RC_UP_20 -- Unpack 20-bit signed integers from a stream of bits.
# Each output integer word contains sucessive 20-bit increments of the input.
# Conversion from one's complement to two's complement is performed.
# It is assummed that initial_bit_offset is the first bit of a Cyber
# 60-bit word containing 3 packed 20-bit pixels, the first pixel in the
# highest 20 bits.
procedure rc_up_20 (input, initial_bit_offset, output, npix_unpk)
char input[ARB]
int output[npix_unpk], npix_unpk
int nbits, n, index, bit_offset, initial_bit_offset
int npix_word, ncyb_words, nn, pix_val
int bitupk()
begin
nbits = 20
npix_word = 3
if (mod (npix_unpk, npix_word) == 0)
ncyb_words = npix_unpk / npix_word
else
call error (0, "Incorrect number of pixels to be unpacked")
index = 1
do n = 1, ncyb_words {
bit_offset = initial_bit_offset + (n * 60)
do nn = 1, npix_word {
bit_offset = bit_offset - nbits
pix_val = bitupk (input, bit_offset, nbits)
if (pix_val == 3777777B)
pix_val = BLANK
else if (and (pix_val, 2000000B) != 0)
# negative pixel
pix_val = -and (3777777B, not(pix_val))
output[index] = pix_val
index = index + 1
}
}
end
# RC_UP_30 -- unpack Cyber 30-bit floating point numbers from a stream of
# bits. The input bit stream is unpacked in 30-bit increments into
# an integer array. Procedure REPACK_FP is called to reconstruct the
# floating point numbers from this array. It is assumed initial_bit_offset
# is the first bit of a Cyber 60-bit word containing 2 30-bit pixels, the
# first pixel in the higher 30 bits.
procedure rc_up_30 (input, initial_bit_offset, fp_value, npix)
char input[ARB]
real fp_value[npix]
pointer int_buf, sp
int initial_bit_offset, npix, bit_offset
int nbits, n
int bitupk()
begin
# Allocate buffer space, allowing for maximum of 1 extraneous pixel
call smark (sp)
call salloc (int_buf, npix + 1, TY_INT)
nbits = 30
bit_offset = initial_bit_offset - 60
do n = 1, npix, 2 {
bit_offset = bit_offset + 90
Memi[int_buf + n - 1] = bitupk (input, bit_offset, 30)
bit_offset = bit_offset - nbits
Memi[int_buf + n] = bitupk (input, bit_offset, 30)
}
call rc_repack_fp (Memi[int_buf], fp_value, npix)
call sfree (sp)
end
# RC_UP_60R -- Unpack Cyber 60-bit floating point numbers from a stream
# of bits. The 30 most significant bits from each 60-bit word are
# unpacked into an integer array. Procedure REPACK_FP is called to
# reconstruct the floating point numbers from this array.
# An 18-bit mantissa, 11-bit exponent and a sign bit are unpacked into
# the lower 30 bits of each output word.
procedure rc_up_60r (input, initial_bit_offset, fp_value, nwords)
char input[ARB]
real fp_value[nwords]
int initial_bit_offset, nwords, bit_offset
pointer int_buf, sp
int n, nbits_unpk, nbits
int bitupk()
begin
# Allocate space on stack
call smark (sp)
call salloc (int_buf, nwords, TY_INT)
nbits = 60
nbits_unpk = 30
bit_offset = initial_bit_offset + 30
do n = 1, nwords {
Memi[int_buf + n - 1] = bitupk (input, bit_offset, nbits_unpk)
bit_offset = bit_offset + 60
}
call rc_repack_fp (Memi[int_buf], fp_value, nwords)
call sfree (sp)
end
# RC_UP_60I -- Unpack 60-bit integers from a stream of bits. Each element
# of output contains only the lower 32 bits of each input word, as this
# procedure is called only for getting NROWS, NCOLS and a few other small
# positive integer values. (A 60-bit intger is not a valid IPPS pixel type.)
procedure rc_up_60i (input, initial_bit_offset, output, nwords)
char input[ARB]
int output[nwords]
int initial_bit_offset, nwords, bit_offset
int n, nbits_unpk, nbits
int bitupk()
begin
nbits_unpk = NBITS_INT
nbits = 60
bit_offset = initial_bit_offset
do n = 1, nwords {
output[n] = bitupk (input, bit_offset, nbits_unpk)
bit_offset = bit_offset + 60
}
end
# RC_UP_ID -- Unpacks ID string from input bit stream. The IPPS ID string is
# written in 7-bit ASCII, with eight characters per Cyber word. The lowest
# 4 bits of each 60-bit word is unused. The highest 7 bits of the first Cyber
# word in the bit stream contains the character count.
procedure rc_up_id (input, output)
char input[SZ_HEADER]
char output[SZ_HEADER]
int nbits, nchar_offset, id_offset, nchars, n
int nchars_word, ncyb_words, nn, index
int bitupk()
begin
nbits = 7
nchar_offset = NBITS_CYBER_WORD - 6
nchars = bitupk (input, nchar_offset, nbits)
ncyb_words = (nchars + 7) / 8
index = 1
do n = 1, ncyb_words {
if (n == 1) {
nchars_word = 7
id_offset = nchar_offset - 7
} else {
nchars_word = 8
id_offset = (n * NBITS_CYBER_WORD) - 6
}
do nn = 1, nchars_word {
output[index] = bitupk (input, id_offset, nbits)
index = index + 1
id_offset = id_offset - 7
}
}
output[nchars+1] = EOS
end
# RC_REPACK_FP -- returns a floating point number as the function value.
# The input to REPACK_FP is an integer containing a 30-bit Cyber floating
# point number in the least significant bits. The exponent, mantissa
# and two bits indicating the sign are extracted and used to reassemble
# the floating point value. Cyber blanks and overflows are returned as BLANK.
procedure rc_repack_fp (int_value, float_value, nvalues)
int int_value[ARB], nvalues
real float_value[nvalues]
int i, pixel
int exp, mantissa
real tbl[255]
int bitupk(), and(), not()
include "../pow.inc"
begin
do i=1, nvalues {
pixel = int_value[i]
# Check for blanks
if (pixel == 1777000000B) {
float_value[i] = BLANK
next
}
# Check "bit59" and complement all bits if it is set
if (and (pixel, 4000000000B) != 0) {
pixel = not (pixel)
mantissa = -and (pixel, 777777B)
} else
mantissa = and (pixel, 777777B)
# Extract and interpret exponent: remove Cyber bias of 2000B
# and convert to two's complement if negative number
exp = bitupk (pixel, 19, 11)
if (exp > 1777B)
# "bit58" is set, positive exponent
exp = exp - 2000B
else
# negative exponent
exp = exp - 1777B
# Reconstruct the floating point value: 30 is added to the
# exponent because only the top 18 bits of the 48-bit mantissa
# were extracted; the 129 is to register the data array index.
# float_value[i] = real(mantissa) * 2 ** (exp + 30)
# (tbl[1] = 2 ** -128) ==> (2 ** n = tbl[n + 129]).
exp = exp + 30 + 129
if (exp <= 0) {
#call eprintf (
#"RRCOPY_RPACK_FP: Exponent underflow in following record\n")
float_value[i] = 0.0
} else if (exp > 255) {
#call eprintf (
#"RRCOPY_REPACK_FP: Exponent overflow in following record\n")
float_value[i] = MAX_REAL
} else if (exp > 0 && exp <= 255)
float_value[i] = double (mantissa) * tbl[exp]
}
end
|