aboutsummaryrefslogtreecommitdiff
path: root/noao/onedspec/odcombine/src/generic/icmedian.x
diff options
context:
space:
mode:
authorJoe Hunkeler <jhunkeler@gmail.com>2015-08-11 16:51:37 -0400
committerJoe Hunkeler <jhunkeler@gmail.com>2015-08-11 16:51:37 -0400
commit40e5a5811c6ffce9b0974e93cdd927cbcf60c157 (patch)
tree4464880c571602d54f6ae114729bf62a89518057 /noao/onedspec/odcombine/src/generic/icmedian.x
downloadiraf-osx-40e5a5811c6ffce9b0974e93cdd927cbcf60c157.tar.gz
Repatch (from linux) of OSX IRAF
Diffstat (limited to 'noao/onedspec/odcombine/src/generic/icmedian.x')
-rw-r--r--noao/onedspec/odcombine/src/generic/icmedian.x692
1 files changed, 692 insertions, 0 deletions
diff --git a/noao/onedspec/odcombine/src/generic/icmedian.x b/noao/onedspec/odcombine/src/generic/icmedian.x
new file mode 100644
index 00000000..1a2ed72d
--- /dev/null
+++ b/noao/onedspec/odcombine/src/generic/icmedian.x
@@ -0,0 +1,692 @@
+# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
+
+include "../icombine.h"
+
+
+# IC_MEDIAN -- Median of lines
+
+procedure ic_medians (d, n, npts, doblank, median)
+
+pointer d[ARB] # Input data line pointers
+int n[npts] # Number of good pixels
+int npts # Number of output points per line
+int doblank # Set blank values?
+real median[npts] # Median
+
+int i, j, k, j1, j2, n1, lo, up, lo1, up1
+bool even
+real val1, val2, val3
+short temp, wtemp
+
+include "../icombine.com"
+
+begin
+ # If no data return after possibly setting blank values.
+ if (dflag == D_NONE) {
+ if (doblank == YES) {
+ do i = 1, npts
+ median[i]= blank
+ }
+ return
+ }
+
+ # If the data were previously sorted then directly compute the median.
+ if (mclip) {
+ if (dflag == D_ALL) {
+ n1 = n[1]
+ even = (mod (n1, 2) == 0)
+ j1 = n1 / 2 + 1
+ j2 = n1 / 2
+ do i = 1, npts {
+ k = i - 1
+ if (even) {
+ val1 = Mems[d[j1]+k]
+ val2 = Mems[d[j2]+k]
+ median[i] = (val1 + val2) / 2.
+ } else
+ median[i] = Mems[d[j1]+k]
+ }
+ } else {
+ do i = 1, npts {
+ k = i - 1
+ n1 = n[i]
+ if (n1 > 0) {
+ j1 = n1 / 2 + 1
+ if (mod (n1, 2) == 0) {
+ j2 = n1 / 2
+ val1 = Mems[d[j1]+k]
+ val2 = Mems[d[j2]+k]
+ median[i] = (val1 + val2) / 2.
+ } else
+ median[i] = Mems[d[j1]+k]
+ } else if (doblank == YES)
+ median[i] = blank
+ }
+ }
+ return
+ }
+
+ # Compute the median.
+ do i = 1, npts {
+ k = i - 1
+ n1 = n[i]
+
+ # If there are more than 3 points use Wirth algorithm. This
+ # is the same as vops$amed.gx except for an even number of
+ # points it selects the middle two and averages.
+ if (n1 > 3) {
+ lo = 1
+ up = n1
+ j = max (lo, min (up, (up+1)/2))
+
+ while (lo < up) {
+ if (! (lo < up))
+ break
+
+ temp = Mems[d[j]+k]; lo1 = lo; up1 = up
+
+ repeat {
+ while (Mems[d[lo1]+k] < temp)
+ lo1 = lo1 + 1
+ while (temp < Mems[d[up1]+k])
+ up1 = up1 - 1
+ if (lo1 <= up1) {
+ wtemp = Mems[d[lo1]+k]
+ Mems[d[lo1]+k] = Mems[d[up1]+k]
+ Mems[d[up1]+k] = wtemp
+ lo1 = lo1 + 1; up1 = up1 - 1
+ }
+ } until (lo1 > up1)
+
+ if (up1 < j)
+ lo = lo1
+ if (j < lo1)
+ up = up1
+ }
+
+ median[i] = Mems[d[j]+k]
+
+ if (mod (n1,2) == 0) {
+ lo = 1
+ up = n1
+ j = max (lo, min (up, (up+1)/2)+1)
+
+ while (lo < up) {
+ if (! (lo < up))
+ break
+
+ temp = Mems[d[j]+k]; lo1 = lo; up1 = up
+
+ repeat {
+ while (Mems[d[lo1]+k] < temp)
+ lo1 = lo1 + 1
+ while (temp < Mems[d[up1]+k])
+ up1 = up1 - 1
+ if (lo1 <= up1) {
+ wtemp = Mems[d[lo1]+k]
+ Mems[d[lo1]+k] = Mems[d[up1]+k]
+ Mems[d[up1]+k] = wtemp
+ lo1 = lo1 + 1; up1 = up1 - 1
+ }
+ } until (lo1 > up1)
+
+ if (up1 < j)
+ lo = lo1
+ if (j < lo1)
+ up = up1
+ }
+ median[i] = (median[i] + Mems[d[j]+k]) / 2
+ }
+
+ # If 3 points find the median directly.
+ } else if (n1 == 3) {
+ val1 = Mems[d[1]+k]
+ val2 = Mems[d[2]+k]
+ val3 = Mems[d[3]+k]
+ if (val1 < val2) {
+ if (val2 < val3) # abc
+ median[i] = val2
+ else if (val1 < val3) # acb
+ median[i] = val3
+ else # cab
+ median[i] = val1
+ } else {
+ if (val2 > val3) # cba
+ median[i] = val2
+ else if (val1 > val3) # bca
+ median[i] = val3
+ else # bac
+ median[i] = val1
+ }
+
+ # If 2 points average.
+ } else if (n1 == 2) {
+ val1 = Mems[d[1]+k]
+ val2 = Mems[d[2]+k]
+ median[i] = (val1 + val2) / 2
+
+ # If 1 point return the value.
+ } else if (n1 == 1)
+ median[i] = Mems[d[1]+k]
+
+ # If no points return with a possibly blank value.
+ else if (doblank == YES)
+ median[i] = blank
+ }
+end
+
+# IC_MEDIAN -- Median of lines
+
+procedure ic_mediani (d, n, npts, doblank, median)
+
+pointer d[ARB] # Input data line pointers
+int n[npts] # Number of good pixels
+int npts # Number of output points per line
+int doblank # Set blank values?
+real median[npts] # Median
+
+int i, j, k, j1, j2, n1, lo, up, lo1, up1
+bool even
+real val1, val2, val3
+int temp, wtemp
+
+include "../icombine.com"
+
+begin
+ # If no data return after possibly setting blank values.
+ if (dflag == D_NONE) {
+ if (doblank == YES) {
+ do i = 1, npts
+ median[i]= blank
+ }
+ return
+ }
+
+ # If the data were previously sorted then directly compute the median.
+ if (mclip) {
+ if (dflag == D_ALL) {
+ n1 = n[1]
+ even = (mod (n1, 2) == 0)
+ j1 = n1 / 2 + 1
+ j2 = n1 / 2
+ do i = 1, npts {
+ k = i - 1
+ if (even) {
+ val1 = Memi[d[j1]+k]
+ val2 = Memi[d[j2]+k]
+ median[i] = (val1 + val2) / 2.
+ } else
+ median[i] = Memi[d[j1]+k]
+ }
+ } else {
+ do i = 1, npts {
+ k = i - 1
+ n1 = n[i]
+ if (n1 > 0) {
+ j1 = n1 / 2 + 1
+ if (mod (n1, 2) == 0) {
+ j2 = n1 / 2
+ val1 = Memi[d[j1]+k]
+ val2 = Memi[d[j2]+k]
+ median[i] = (val1 + val2) / 2.
+ } else
+ median[i] = Memi[d[j1]+k]
+ } else if (doblank == YES)
+ median[i] = blank
+ }
+ }
+ return
+ }
+
+ # Compute the median.
+ do i = 1, npts {
+ k = i - 1
+ n1 = n[i]
+
+ # If there are more than 3 points use Wirth algorithm. This
+ # is the same as vops$amed.gx except for an even number of
+ # points it selects the middle two and averages.
+ if (n1 > 3) {
+ lo = 1
+ up = n1
+ j = max (lo, min (up, (up+1)/2))
+
+ while (lo < up) {
+ if (! (lo < up))
+ break
+
+ temp = Memi[d[j]+k]; lo1 = lo; up1 = up
+
+ repeat {
+ while (Memi[d[lo1]+k] < temp)
+ lo1 = lo1 + 1
+ while (temp < Memi[d[up1]+k])
+ up1 = up1 - 1
+ if (lo1 <= up1) {
+ wtemp = Memi[d[lo1]+k]
+ Memi[d[lo1]+k] = Memi[d[up1]+k]
+ Memi[d[up1]+k] = wtemp
+ lo1 = lo1 + 1; up1 = up1 - 1
+ }
+ } until (lo1 > up1)
+
+ if (up1 < j)
+ lo = lo1
+ if (j < lo1)
+ up = up1
+ }
+
+ median[i] = Memi[d[j]+k]
+
+ if (mod (n1,2) == 0) {
+ lo = 1
+ up = n1
+ j = max (lo, min (up, (up+1)/2)+1)
+
+ while (lo < up) {
+ if (! (lo < up))
+ break
+
+ temp = Memi[d[j]+k]; lo1 = lo; up1 = up
+
+ repeat {
+ while (Memi[d[lo1]+k] < temp)
+ lo1 = lo1 + 1
+ while (temp < Memi[d[up1]+k])
+ up1 = up1 - 1
+ if (lo1 <= up1) {
+ wtemp = Memi[d[lo1]+k]
+ Memi[d[lo1]+k] = Memi[d[up1]+k]
+ Memi[d[up1]+k] = wtemp
+ lo1 = lo1 + 1; up1 = up1 - 1
+ }
+ } until (lo1 > up1)
+
+ if (up1 < j)
+ lo = lo1
+ if (j < lo1)
+ up = up1
+ }
+ median[i] = (median[i] + Memi[d[j]+k]) / 2
+ }
+
+ # If 3 points find the median directly.
+ } else if (n1 == 3) {
+ val1 = Memi[d[1]+k]
+ val2 = Memi[d[2]+k]
+ val3 = Memi[d[3]+k]
+ if (val1 < val2) {
+ if (val2 < val3) # abc
+ median[i] = val2
+ else if (val1 < val3) # acb
+ median[i] = val3
+ else # cab
+ median[i] = val1
+ } else {
+ if (val2 > val3) # cba
+ median[i] = val2
+ else if (val1 > val3) # bca
+ median[i] = val3
+ else # bac
+ median[i] = val1
+ }
+
+ # If 2 points average.
+ } else if (n1 == 2) {
+ val1 = Memi[d[1]+k]
+ val2 = Memi[d[2]+k]
+ median[i] = (val1 + val2) / 2
+
+ # If 1 point return the value.
+ } else if (n1 == 1)
+ median[i] = Memi[d[1]+k]
+
+ # If no points return with a possibly blank value.
+ else if (doblank == YES)
+ median[i] = blank
+ }
+end
+
+# IC_MEDIAN -- Median of lines
+
+procedure ic_medianr (d, n, npts, doblank, median)
+
+pointer d[ARB] # Input data line pointers
+int n[npts] # Number of good pixels
+int npts # Number of output points per line
+int doblank # Set blank values?
+real median[npts] # Median
+
+int i, j, k, j1, j2, n1, lo, up, lo1, up1
+bool even
+real val1, val2, val3
+real temp, wtemp
+
+include "../icombine.com"
+
+begin
+ # If no data return after possibly setting blank values.
+ if (dflag == D_NONE) {
+ if (doblank == YES) {
+ do i = 1, npts
+ median[i]= blank
+ }
+ return
+ }
+
+ # If the data were previously sorted then directly compute the median.
+ if (mclip) {
+ if (dflag == D_ALL) {
+ n1 = n[1]
+ even = (mod (n1, 2) == 0)
+ j1 = n1 / 2 + 1
+ j2 = n1 / 2
+ do i = 1, npts {
+ k = i - 1
+ if (even) {
+ val1 = Memr[d[j1]+k]
+ val2 = Memr[d[j2]+k]
+ median[i] = (val1 + val2) / 2.
+ } else
+ median[i] = Memr[d[j1]+k]
+ }
+ } else {
+ do i = 1, npts {
+ k = i - 1
+ n1 = n[i]
+ if (n1 > 0) {
+ j1 = n1 / 2 + 1
+ if (mod (n1, 2) == 0) {
+ j2 = n1 / 2
+ val1 = Memr[d[j1]+k]
+ val2 = Memr[d[j2]+k]
+ median[i] = (val1 + val2) / 2.
+ } else
+ median[i] = Memr[d[j1]+k]
+ } else if (doblank == YES)
+ median[i] = blank
+ }
+ }
+ return
+ }
+
+ # Compute the median.
+ do i = 1, npts {
+ k = i - 1
+ n1 = n[i]
+
+ # If there are more than 3 points use Wirth algorithm. This
+ # is the same as vops$amed.gx except for an even number of
+ # points it selects the middle two and averages.
+ if (n1 > 3) {
+ lo = 1
+ up = n1
+ j = max (lo, min (up, (up+1)/2))
+
+ while (lo < up) {
+ if (! (lo < up))
+ break
+
+ temp = Memr[d[j]+k]; lo1 = lo; up1 = up
+
+ repeat {
+ while (Memr[d[lo1]+k] < temp)
+ lo1 = lo1 + 1
+ while (temp < Memr[d[up1]+k])
+ up1 = up1 - 1
+ if (lo1 <= up1) {
+ wtemp = Memr[d[lo1]+k]
+ Memr[d[lo1]+k] = Memr[d[up1]+k]
+ Memr[d[up1]+k] = wtemp
+ lo1 = lo1 + 1; up1 = up1 - 1
+ }
+ } until (lo1 > up1)
+
+ if (up1 < j)
+ lo = lo1
+ if (j < lo1)
+ up = up1
+ }
+
+ median[i] = Memr[d[j]+k]
+
+ if (mod (n1,2) == 0) {
+ lo = 1
+ up = n1
+ j = max (lo, min (up, (up+1)/2)+1)
+
+ while (lo < up) {
+ if (! (lo < up))
+ break
+
+ temp = Memr[d[j]+k]; lo1 = lo; up1 = up
+
+ repeat {
+ while (Memr[d[lo1]+k] < temp)
+ lo1 = lo1 + 1
+ while (temp < Memr[d[up1]+k])
+ up1 = up1 - 1
+ if (lo1 <= up1) {
+ wtemp = Memr[d[lo1]+k]
+ Memr[d[lo1]+k] = Memr[d[up1]+k]
+ Memr[d[up1]+k] = wtemp
+ lo1 = lo1 + 1; up1 = up1 - 1
+ }
+ } until (lo1 > up1)
+
+ if (up1 < j)
+ lo = lo1
+ if (j < lo1)
+ up = up1
+ }
+ median[i] = (median[i] + Memr[d[j]+k]) / 2
+ }
+
+ # If 3 points find the median directly.
+ } else if (n1 == 3) {
+ val1 = Memr[d[1]+k]
+ val2 = Memr[d[2]+k]
+ val3 = Memr[d[3]+k]
+ if (val1 < val2) {
+ if (val2 < val3) # abc
+ median[i] = val2
+ else if (val1 < val3) # acb
+ median[i] = val3
+ else # cab
+ median[i] = val1
+ } else {
+ if (val2 > val3) # cba
+ median[i] = val2
+ else if (val1 > val3) # bca
+ median[i] = val3
+ else # bac
+ median[i] = val1
+ }
+
+ # If 2 points average.
+ } else if (n1 == 2) {
+ val1 = Memr[d[1]+k]
+ val2 = Memr[d[2]+k]
+ median[i] = (val1 + val2) / 2
+
+ # If 1 point return the value.
+ } else if (n1 == 1)
+ median[i] = Memr[d[1]+k]
+
+ # If no points return with a possibly blank value.
+ else if (doblank == YES)
+ median[i] = blank
+ }
+end
+
+# IC_MEDIAN -- Median of lines
+
+procedure ic_mediand (d, n, npts, doblank, median)
+
+pointer d[ARB] # Input data line pointers
+int n[npts] # Number of good pixels
+int npts # Number of output points per line
+int doblank # Set blank values?
+double median[npts] # Median
+
+int i, j, k, j1, j2, n1, lo, up, lo1, up1
+bool even
+double val1, val2, val3
+double temp, wtemp
+
+include "../icombine.com"
+
+begin
+ # If no data return after possibly setting blank values.
+ if (dflag == D_NONE) {
+ if (doblank == YES) {
+ do i = 1, npts
+ median[i]= blank
+ }
+ return
+ }
+
+ # If the data were previously sorted then directly compute the median.
+ if (mclip) {
+ if (dflag == D_ALL) {
+ n1 = n[1]
+ even = (mod (n1, 2) == 0)
+ j1 = n1 / 2 + 1
+ j2 = n1 / 2
+ do i = 1, npts {
+ k = i - 1
+ if (even) {
+ val1 = Memd[d[j1]+k]
+ val2 = Memd[d[j2]+k]
+ median[i] = (val1 + val2) / 2.
+ } else
+ median[i] = Memd[d[j1]+k]
+ }
+ } else {
+ do i = 1, npts {
+ k = i - 1
+ n1 = n[i]
+ if (n1 > 0) {
+ j1 = n1 / 2 + 1
+ if (mod (n1, 2) == 0) {
+ j2 = n1 / 2
+ val1 = Memd[d[j1]+k]
+ val2 = Memd[d[j2]+k]
+ median[i] = (val1 + val2) / 2.
+ } else
+ median[i] = Memd[d[j1]+k]
+ } else if (doblank == YES)
+ median[i] = blank
+ }
+ }
+ return
+ }
+
+ # Compute the median.
+ do i = 1, npts {
+ k = i - 1
+ n1 = n[i]
+
+ # If there are more than 3 points use Wirth algorithm. This
+ # is the same as vops$amed.gx except for an even number of
+ # points it selects the middle two and averages.
+ if (n1 > 3) {
+ lo = 1
+ up = n1
+ j = max (lo, min (up, (up+1)/2))
+
+ while (lo < up) {
+ if (! (lo < up))
+ break
+
+ temp = Memd[d[j]+k]; lo1 = lo; up1 = up
+
+ repeat {
+ while (Memd[d[lo1]+k] < temp)
+ lo1 = lo1 + 1
+ while (temp < Memd[d[up1]+k])
+ up1 = up1 - 1
+ if (lo1 <= up1) {
+ wtemp = Memd[d[lo1]+k]
+ Memd[d[lo1]+k] = Memd[d[up1]+k]
+ Memd[d[up1]+k] = wtemp
+ lo1 = lo1 + 1; up1 = up1 - 1
+ }
+ } until (lo1 > up1)
+
+ if (up1 < j)
+ lo = lo1
+ if (j < lo1)
+ up = up1
+ }
+
+ median[i] = Memd[d[j]+k]
+
+ if (mod (n1,2) == 0) {
+ lo = 1
+ up = n1
+ j = max (lo, min (up, (up+1)/2)+1)
+
+ while (lo < up) {
+ if (! (lo < up))
+ break
+
+ temp = Memd[d[j]+k]; lo1 = lo; up1 = up
+
+ repeat {
+ while (Memd[d[lo1]+k] < temp)
+ lo1 = lo1 + 1
+ while (temp < Memd[d[up1]+k])
+ up1 = up1 - 1
+ if (lo1 <= up1) {
+ wtemp = Memd[d[lo1]+k]
+ Memd[d[lo1]+k] = Memd[d[up1]+k]
+ Memd[d[up1]+k] = wtemp
+ lo1 = lo1 + 1; up1 = up1 - 1
+ }
+ } until (lo1 > up1)
+
+ if (up1 < j)
+ lo = lo1
+ if (j < lo1)
+ up = up1
+ }
+ median[i] = (median[i] + Memd[d[j]+k]) / 2
+ }
+
+ # If 3 points find the median directly.
+ } else if (n1 == 3) {
+ val1 = Memd[d[1]+k]
+ val2 = Memd[d[2]+k]
+ val3 = Memd[d[3]+k]
+ if (val1 < val2) {
+ if (val2 < val3) # abc
+ median[i] = val2
+ else if (val1 < val3) # acb
+ median[i] = val3
+ else # cab
+ median[i] = val1
+ } else {
+ if (val2 > val3) # cba
+ median[i] = val2
+ else if (val1 > val3) # bca
+ median[i] = val3
+ else # bac
+ median[i] = val1
+ }
+
+ # If 2 points average.
+ } else if (n1 == 2) {
+ val1 = Memd[d[1]+k]
+ val2 = Memd[d[2]+k]
+ median[i] = (val1 + val2) / 2
+
+ # If 1 point return the value.
+ } else if (n1 == 1)
+ median[i] = Memd[d[1]+k]
+
+ # If no points return with a possibly blank value.
+ else if (doblank == YES)
+ median[i] = blank
+ }
+end