diff options
Diffstat (limited to 'noao/onedspec/odcombine/src/generic/icmedian.x')
-rw-r--r-- | noao/onedspec/odcombine/src/generic/icmedian.x | 692 |
1 files changed, 692 insertions, 0 deletions
diff --git a/noao/onedspec/odcombine/src/generic/icmedian.x b/noao/onedspec/odcombine/src/generic/icmedian.x new file mode 100644 index 00000000..1a2ed72d --- /dev/null +++ b/noao/onedspec/odcombine/src/generic/icmedian.x @@ -0,0 +1,692 @@ +# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. + +include "../icombine.h" + + +# IC_MEDIAN -- Median of lines + +procedure ic_medians (d, n, npts, doblank, median) + +pointer d[ARB] # Input data line pointers +int n[npts] # Number of good pixels +int npts # Number of output points per line +int doblank # Set blank values? +real median[npts] # Median + +int i, j, k, j1, j2, n1, lo, up, lo1, up1 +bool even +real val1, val2, val3 +short temp, wtemp + +include "../icombine.com" + +begin + # If no data return after possibly setting blank values. + if (dflag == D_NONE) { + if (doblank == YES) { + do i = 1, npts + median[i]= blank + } + return + } + + # If the data were previously sorted then directly compute the median. + if (mclip) { + if (dflag == D_ALL) { + n1 = n[1] + even = (mod (n1, 2) == 0) + j1 = n1 / 2 + 1 + j2 = n1 / 2 + do i = 1, npts { + k = i - 1 + if (even) { + val1 = Mems[d[j1]+k] + val2 = Mems[d[j2]+k] + median[i] = (val1 + val2) / 2. + } else + median[i] = Mems[d[j1]+k] + } + } else { + do i = 1, npts { + k = i - 1 + n1 = n[i] + if (n1 > 0) { + j1 = n1 / 2 + 1 + if (mod (n1, 2) == 0) { + j2 = n1 / 2 + val1 = Mems[d[j1]+k] + val2 = Mems[d[j2]+k] + median[i] = (val1 + val2) / 2. + } else + median[i] = Mems[d[j1]+k] + } else if (doblank == YES) + median[i] = blank + } + } + return + } + + # Compute the median. + do i = 1, npts { + k = i - 1 + n1 = n[i] + + # If there are more than 3 points use Wirth algorithm. This + # is the same as vops$amed.gx except for an even number of + # points it selects the middle two and averages. + if (n1 > 3) { + lo = 1 + up = n1 + j = max (lo, min (up, (up+1)/2)) + + while (lo < up) { + if (! (lo < up)) + break + + temp = Mems[d[j]+k]; lo1 = lo; up1 = up + + repeat { + while (Mems[d[lo1]+k] < temp) + lo1 = lo1 + 1 + while (temp < Mems[d[up1]+k]) + up1 = up1 - 1 + if (lo1 <= up1) { + wtemp = Mems[d[lo1]+k] + Mems[d[lo1]+k] = Mems[d[up1]+k] + Mems[d[up1]+k] = wtemp + lo1 = lo1 + 1; up1 = up1 - 1 + } + } until (lo1 > up1) + + if (up1 < j) + lo = lo1 + if (j < lo1) + up = up1 + } + + median[i] = Mems[d[j]+k] + + if (mod (n1,2) == 0) { + lo = 1 + up = n1 + j = max (lo, min (up, (up+1)/2)+1) + + while (lo < up) { + if (! (lo < up)) + break + + temp = Mems[d[j]+k]; lo1 = lo; up1 = up + + repeat { + while (Mems[d[lo1]+k] < temp) + lo1 = lo1 + 1 + while (temp < Mems[d[up1]+k]) + up1 = up1 - 1 + if (lo1 <= up1) { + wtemp = Mems[d[lo1]+k] + Mems[d[lo1]+k] = Mems[d[up1]+k] + Mems[d[up1]+k] = wtemp + lo1 = lo1 + 1; up1 = up1 - 1 + } + } until (lo1 > up1) + + if (up1 < j) + lo = lo1 + if (j < lo1) + up = up1 + } + median[i] = (median[i] + Mems[d[j]+k]) / 2 + } + + # If 3 points find the median directly. + } else if (n1 == 3) { + val1 = Mems[d[1]+k] + val2 = Mems[d[2]+k] + val3 = Mems[d[3]+k] + if (val1 < val2) { + if (val2 < val3) # abc + median[i] = val2 + else if (val1 < val3) # acb + median[i] = val3 + else # cab + median[i] = val1 + } else { + if (val2 > val3) # cba + median[i] = val2 + else if (val1 > val3) # bca + median[i] = val3 + else # bac + median[i] = val1 + } + + # If 2 points average. + } else if (n1 == 2) { + val1 = Mems[d[1]+k] + val2 = Mems[d[2]+k] + median[i] = (val1 + val2) / 2 + + # If 1 point return the value. + } else if (n1 == 1) + median[i] = Mems[d[1]+k] + + # If no points return with a possibly blank value. + else if (doblank == YES) + median[i] = blank + } +end + +# IC_MEDIAN -- Median of lines + +procedure ic_mediani (d, n, npts, doblank, median) + +pointer d[ARB] # Input data line pointers +int n[npts] # Number of good pixels +int npts # Number of output points per line +int doblank # Set blank values? +real median[npts] # Median + +int i, j, k, j1, j2, n1, lo, up, lo1, up1 +bool even +real val1, val2, val3 +int temp, wtemp + +include "../icombine.com" + +begin + # If no data return after possibly setting blank values. + if (dflag == D_NONE) { + if (doblank == YES) { + do i = 1, npts + median[i]= blank + } + return + } + + # If the data were previously sorted then directly compute the median. + if (mclip) { + if (dflag == D_ALL) { + n1 = n[1] + even = (mod (n1, 2) == 0) + j1 = n1 / 2 + 1 + j2 = n1 / 2 + do i = 1, npts { + k = i - 1 + if (even) { + val1 = Memi[d[j1]+k] + val2 = Memi[d[j2]+k] + median[i] = (val1 + val2) / 2. + } else + median[i] = Memi[d[j1]+k] + } + } else { + do i = 1, npts { + k = i - 1 + n1 = n[i] + if (n1 > 0) { + j1 = n1 / 2 + 1 + if (mod (n1, 2) == 0) { + j2 = n1 / 2 + val1 = Memi[d[j1]+k] + val2 = Memi[d[j2]+k] + median[i] = (val1 + val2) / 2. + } else + median[i] = Memi[d[j1]+k] + } else if (doblank == YES) + median[i] = blank + } + } + return + } + + # Compute the median. + do i = 1, npts { + k = i - 1 + n1 = n[i] + + # If there are more than 3 points use Wirth algorithm. This + # is the same as vops$amed.gx except for an even number of + # points it selects the middle two and averages. + if (n1 > 3) { + lo = 1 + up = n1 + j = max (lo, min (up, (up+1)/2)) + + while (lo < up) { + if (! (lo < up)) + break + + temp = Memi[d[j]+k]; lo1 = lo; up1 = up + + repeat { + while (Memi[d[lo1]+k] < temp) + lo1 = lo1 + 1 + while (temp < Memi[d[up1]+k]) + up1 = up1 - 1 + if (lo1 <= up1) { + wtemp = Memi[d[lo1]+k] + Memi[d[lo1]+k] = Memi[d[up1]+k] + Memi[d[up1]+k] = wtemp + lo1 = lo1 + 1; up1 = up1 - 1 + } + } until (lo1 > up1) + + if (up1 < j) + lo = lo1 + if (j < lo1) + up = up1 + } + + median[i] = Memi[d[j]+k] + + if (mod (n1,2) == 0) { + lo = 1 + up = n1 + j = max (lo, min (up, (up+1)/2)+1) + + while (lo < up) { + if (! (lo < up)) + break + + temp = Memi[d[j]+k]; lo1 = lo; up1 = up + + repeat { + while (Memi[d[lo1]+k] < temp) + lo1 = lo1 + 1 + while (temp < Memi[d[up1]+k]) + up1 = up1 - 1 + if (lo1 <= up1) { + wtemp = Memi[d[lo1]+k] + Memi[d[lo1]+k] = Memi[d[up1]+k] + Memi[d[up1]+k] = wtemp + lo1 = lo1 + 1; up1 = up1 - 1 + } + } until (lo1 > up1) + + if (up1 < j) + lo = lo1 + if (j < lo1) + up = up1 + } + median[i] = (median[i] + Memi[d[j]+k]) / 2 + } + + # If 3 points find the median directly. + } else if (n1 == 3) { + val1 = Memi[d[1]+k] + val2 = Memi[d[2]+k] + val3 = Memi[d[3]+k] + if (val1 < val2) { + if (val2 < val3) # abc + median[i] = val2 + else if (val1 < val3) # acb + median[i] = val3 + else # cab + median[i] = val1 + } else { + if (val2 > val3) # cba + median[i] = val2 + else if (val1 > val3) # bca + median[i] = val3 + else # bac + median[i] = val1 + } + + # If 2 points average. + } else if (n1 == 2) { + val1 = Memi[d[1]+k] + val2 = Memi[d[2]+k] + median[i] = (val1 + val2) / 2 + + # If 1 point return the value. + } else if (n1 == 1) + median[i] = Memi[d[1]+k] + + # If no points return with a possibly blank value. + else if (doblank == YES) + median[i] = blank + } +end + +# IC_MEDIAN -- Median of lines + +procedure ic_medianr (d, n, npts, doblank, median) + +pointer d[ARB] # Input data line pointers +int n[npts] # Number of good pixels +int npts # Number of output points per line +int doblank # Set blank values? +real median[npts] # Median + +int i, j, k, j1, j2, n1, lo, up, lo1, up1 +bool even +real val1, val2, val3 +real temp, wtemp + +include "../icombine.com" + +begin + # If no data return after possibly setting blank values. + if (dflag == D_NONE) { + if (doblank == YES) { + do i = 1, npts + median[i]= blank + } + return + } + + # If the data were previously sorted then directly compute the median. + if (mclip) { + if (dflag == D_ALL) { + n1 = n[1] + even = (mod (n1, 2) == 0) + j1 = n1 / 2 + 1 + j2 = n1 / 2 + do i = 1, npts { + k = i - 1 + if (even) { + val1 = Memr[d[j1]+k] + val2 = Memr[d[j2]+k] + median[i] = (val1 + val2) / 2. + } else + median[i] = Memr[d[j1]+k] + } + } else { + do i = 1, npts { + k = i - 1 + n1 = n[i] + if (n1 > 0) { + j1 = n1 / 2 + 1 + if (mod (n1, 2) == 0) { + j2 = n1 / 2 + val1 = Memr[d[j1]+k] + val2 = Memr[d[j2]+k] + median[i] = (val1 + val2) / 2. + } else + median[i] = Memr[d[j1]+k] + } else if (doblank == YES) + median[i] = blank + } + } + return + } + + # Compute the median. + do i = 1, npts { + k = i - 1 + n1 = n[i] + + # If there are more than 3 points use Wirth algorithm. This + # is the same as vops$amed.gx except for an even number of + # points it selects the middle two and averages. + if (n1 > 3) { + lo = 1 + up = n1 + j = max (lo, min (up, (up+1)/2)) + + while (lo < up) { + if (! (lo < up)) + break + + temp = Memr[d[j]+k]; lo1 = lo; up1 = up + + repeat { + while (Memr[d[lo1]+k] < temp) + lo1 = lo1 + 1 + while (temp < Memr[d[up1]+k]) + up1 = up1 - 1 + if (lo1 <= up1) { + wtemp = Memr[d[lo1]+k] + Memr[d[lo1]+k] = Memr[d[up1]+k] + Memr[d[up1]+k] = wtemp + lo1 = lo1 + 1; up1 = up1 - 1 + } + } until (lo1 > up1) + + if (up1 < j) + lo = lo1 + if (j < lo1) + up = up1 + } + + median[i] = Memr[d[j]+k] + + if (mod (n1,2) == 0) { + lo = 1 + up = n1 + j = max (lo, min (up, (up+1)/2)+1) + + while (lo < up) { + if (! (lo < up)) + break + + temp = Memr[d[j]+k]; lo1 = lo; up1 = up + + repeat { + while (Memr[d[lo1]+k] < temp) + lo1 = lo1 + 1 + while (temp < Memr[d[up1]+k]) + up1 = up1 - 1 + if (lo1 <= up1) { + wtemp = Memr[d[lo1]+k] + Memr[d[lo1]+k] = Memr[d[up1]+k] + Memr[d[up1]+k] = wtemp + lo1 = lo1 + 1; up1 = up1 - 1 + } + } until (lo1 > up1) + + if (up1 < j) + lo = lo1 + if (j < lo1) + up = up1 + } + median[i] = (median[i] + Memr[d[j]+k]) / 2 + } + + # If 3 points find the median directly. + } else if (n1 == 3) { + val1 = Memr[d[1]+k] + val2 = Memr[d[2]+k] + val3 = Memr[d[3]+k] + if (val1 < val2) { + if (val2 < val3) # abc + median[i] = val2 + else if (val1 < val3) # acb + median[i] = val3 + else # cab + median[i] = val1 + } else { + if (val2 > val3) # cba + median[i] = val2 + else if (val1 > val3) # bca + median[i] = val3 + else # bac + median[i] = val1 + } + + # If 2 points average. + } else if (n1 == 2) { + val1 = Memr[d[1]+k] + val2 = Memr[d[2]+k] + median[i] = (val1 + val2) / 2 + + # If 1 point return the value. + } else if (n1 == 1) + median[i] = Memr[d[1]+k] + + # If no points return with a possibly blank value. + else if (doblank == YES) + median[i] = blank + } +end + +# IC_MEDIAN -- Median of lines + +procedure ic_mediand (d, n, npts, doblank, median) + +pointer d[ARB] # Input data line pointers +int n[npts] # Number of good pixels +int npts # Number of output points per line +int doblank # Set blank values? +double median[npts] # Median + +int i, j, k, j1, j2, n1, lo, up, lo1, up1 +bool even +double val1, val2, val3 +double temp, wtemp + +include "../icombine.com" + +begin + # If no data return after possibly setting blank values. + if (dflag == D_NONE) { + if (doblank == YES) { + do i = 1, npts + median[i]= blank + } + return + } + + # If the data were previously sorted then directly compute the median. + if (mclip) { + if (dflag == D_ALL) { + n1 = n[1] + even = (mod (n1, 2) == 0) + j1 = n1 / 2 + 1 + j2 = n1 / 2 + do i = 1, npts { + k = i - 1 + if (even) { + val1 = Memd[d[j1]+k] + val2 = Memd[d[j2]+k] + median[i] = (val1 + val2) / 2. + } else + median[i] = Memd[d[j1]+k] + } + } else { + do i = 1, npts { + k = i - 1 + n1 = n[i] + if (n1 > 0) { + j1 = n1 / 2 + 1 + if (mod (n1, 2) == 0) { + j2 = n1 / 2 + val1 = Memd[d[j1]+k] + val2 = Memd[d[j2]+k] + median[i] = (val1 + val2) / 2. + } else + median[i] = Memd[d[j1]+k] + } else if (doblank == YES) + median[i] = blank + } + } + return + } + + # Compute the median. + do i = 1, npts { + k = i - 1 + n1 = n[i] + + # If there are more than 3 points use Wirth algorithm. This + # is the same as vops$amed.gx except for an even number of + # points it selects the middle two and averages. + if (n1 > 3) { + lo = 1 + up = n1 + j = max (lo, min (up, (up+1)/2)) + + while (lo < up) { + if (! (lo < up)) + break + + temp = Memd[d[j]+k]; lo1 = lo; up1 = up + + repeat { + while (Memd[d[lo1]+k] < temp) + lo1 = lo1 + 1 + while (temp < Memd[d[up1]+k]) + up1 = up1 - 1 + if (lo1 <= up1) { + wtemp = Memd[d[lo1]+k] + Memd[d[lo1]+k] = Memd[d[up1]+k] + Memd[d[up1]+k] = wtemp + lo1 = lo1 + 1; up1 = up1 - 1 + } + } until (lo1 > up1) + + if (up1 < j) + lo = lo1 + if (j < lo1) + up = up1 + } + + median[i] = Memd[d[j]+k] + + if (mod (n1,2) == 0) { + lo = 1 + up = n1 + j = max (lo, min (up, (up+1)/2)+1) + + while (lo < up) { + if (! (lo < up)) + break + + temp = Memd[d[j]+k]; lo1 = lo; up1 = up + + repeat { + while (Memd[d[lo1]+k] < temp) + lo1 = lo1 + 1 + while (temp < Memd[d[up1]+k]) + up1 = up1 - 1 + if (lo1 <= up1) { + wtemp = Memd[d[lo1]+k] + Memd[d[lo1]+k] = Memd[d[up1]+k] + Memd[d[up1]+k] = wtemp + lo1 = lo1 + 1; up1 = up1 - 1 + } + } until (lo1 > up1) + + if (up1 < j) + lo = lo1 + if (j < lo1) + up = up1 + } + median[i] = (median[i] + Memd[d[j]+k]) / 2 + } + + # If 3 points find the median directly. + } else if (n1 == 3) { + val1 = Memd[d[1]+k] + val2 = Memd[d[2]+k] + val3 = Memd[d[3]+k] + if (val1 < val2) { + if (val2 < val3) # abc + median[i] = val2 + else if (val1 < val3) # acb + median[i] = val3 + else # cab + median[i] = val1 + } else { + if (val2 > val3) # cba + median[i] = val2 + else if (val1 > val3) # bca + median[i] = val3 + else # bac + median[i] = val1 + } + + # If 2 points average. + } else if (n1 == 2) { + val1 = Memd[d[1]+k] + val2 = Memd[d[2]+k] + median[i] = (val1 + val2) / 2 + + # If 1 point return the value. + } else if (n1 == 1) + median[i] = Memd[d[1]+k] + + # If no points return with a possibly blank value. + else if (doblank == YES) + median[i] = blank + } +end |