summaryrefslogtreecommitdiff
path: root/distortion
diff options
context:
space:
mode:
authordencheva <dencheva@stsci.edu>2008-08-15 09:49:03 -0400
committerdencheva <dencheva@stsci.edu>2008-08-15 09:49:03 -0400
commitc42103854ca3f38cd88e7d07b6c5a8af5eda0ee2 (patch)
tree386183951b5ed43415b6afd12ca390683902906c /distortion
downloadstwcs_hcf-c42103854ca3f38cd88e7d07b6c5a8af5eda0ee2.tar.gz
moved hstwcs from general development repository to stsci_python/development
git-svn-id: http://svn.stsci.edu/svn/ssb/stsci_python/development/trunk/hstwcs@6931 fe389314-cf27-0410-b35b-8c050e845b92
Diffstat (limited to 'distortion')
-rw-r--r--distortion/__init__.py0
-rw-r--r--distortion/models.py360
-rw-r--r--distortion/mutil.py605
3 files changed, 965 insertions, 0 deletions
diff --git a/distortion/__init__.py b/distortion/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/distortion/__init__.py
diff --git a/distortion/models.py b/distortion/models.py
new file mode 100644
index 0000000..cff9a46
--- /dev/null
+++ b/distortion/models.py
@@ -0,0 +1,360 @@
+import types
+
+# Import PyDrizzle utility modules
+import mutil
+import numpy as N
+import mutil
+from mutil import combin
+
+yes = True
+no = False
+
+#################
+#
+#
+# Geometry/Distortion Classes
+#
+#
+#################
+
+class GeometryModel:
+ """
+ Base class for Distortion model.
+ There will be a separate class for each type of
+ model/filetype used with drizzle, i.e., IDCModel and
+ DrizzleModel.
+
+ Each class will know how to apply the distortion to a
+ single point and how to convert coefficients to an input table
+ suitable for the drizzle task.
+
+ Coefficients will be stored in CX,CY arrays.
+ """
+ #
+ #
+ #
+ #
+ #
+ #
+ #
+ NORDER = 3
+
+ def __init__(self):
+ " This will open the given file and determine its type and norder."
+
+ # Method to read in coefficients from given table and
+ # populate the n arrays 'cx' and 'cy'.
+ # This will be different for each type of input file,
+ # IDCTAB vs. drizzle table.
+
+ # Set these up here for all sub-classes to use...
+ # But, calculate norder and cx,cy arrays in detector specific classes.
+ self.cx = None
+ self.cy = None
+ self.refpix = None
+ self.norder = self.NORDER
+ # Keep track of computed zero-point for distortion coeffs
+ self.x0 = None
+ self.y0 = None
+
+ # default values for these attributes
+ self.direction = 'forward'
+
+ self.pscale = 1.0
+
+ def shift(self,cx,cy,xs,ys):
+ """
+ Shift reference position of coefficients to new center
+ where (xs,ys) = old-reference-position - subarray/image center.
+ This will support creating coeffs files for drizzle which will
+ be applied relative to the center of the image, rather than relative
+ to the reference position of the chip.
+ """
+
+ _cxs = N.zeros(shape=cx.shape,dtype=cx.dtype)
+ _cys = N.zeros(shape=cy.shape,dtype=cy.dtype)
+ _k = self.norder + 1
+ # loop over each input coefficient
+ for m in xrange(_k):
+ for n in xrange(_k):
+ if m >= n:
+ # For this coefficient, shift by xs/ys.
+ _ilist = range(m, _k)
+ # sum from m to k
+ for i in _ilist:
+ _jlist = range(n, i - (m-n)+1)
+ # sum from n to i-(m-n)
+ for j in _jlist:
+ _cxs[m,n] += cx[i,j]*combin(j,n)*combin((i-j),(m-n))*pow(xs,(j-n))*pow(ys,((i-j)-(m-n)))
+ _cys[m,n] += cy[i,j]*combin(j,n)*combin((i-j),(m-n))*pow(xs,(j-n))*pow(ys,((i-j)-(m-n)))
+ return _cxs,_cys
+
+ def convert(self, tmpname, xref=None,yref=None,delta=yes):
+ """
+ Open up an ASCII file, output coefficients in drizzle
+ format after converting them as necessary.
+ First, normalize these coefficients to what drizzle expects
+ Normalize the coefficients by the MODEL/output plate scale.
+
+ 16-May-2002:
+ Revised to work with higher order polynomials by John Blakeslee.
+ 27-June-2002:
+ Added ability to shift coefficients to new center for support
+ of subarrays.
+ """
+ cx = self.cx/self.pscale
+ cy = self.cy/self.pscale
+ x0 = self.refpix['XDELTA'] + cx[0,0]
+ y0 = self.refpix['YDELTA'] + cy[0,0]
+ #xr = self.refpix['XREF']
+ #yr = self.refpix['YREF']
+ xr = self.refpix['CHIP_XREF']
+ yr = self.refpix['CHIP_YREF']
+
+
+
+ '''
+ if xref != None:
+ # Shift coefficients for use with drizzle
+ _xs = xref - self.refpix['XREF'] + 1.0
+ _ys = yref - self.refpix['YREF'] + 1.0
+
+
+ if _xs != 0 or _ys != 0:
+ cxs,cys= self.shift(cx, cy, _xs, _ys)
+ cx = cxs
+ cy = cys
+
+ # We only want to apply this shift to coeffs
+ # for subarray images.
+ if delta == no:
+ cxs[0,0] = cxs[0,0] - _xs
+ cys[0,0] = cys[0,0] - _ys
+
+ # Now, apply only the difference introduced by the distortion..
+ # i.e., (undistorted - original) shift.
+ x0 += cxs[0,0]
+ y0 += cys[0,0]
+ '''
+ self.x0 = x0 #+ 1.0
+ self.y0 = y0 #+ 1.0
+
+ # Now, write out the coefficients into an ASCII
+ # file in 'drizzle' format.
+ lines = []
+
+
+ lines.append('# Polynomial distortion coefficients\n')
+ lines.append('# Extracted from "%s" \n'%self.name)
+ lines.append('refpix %f %f \n'%(xr,yr))
+ if self.norder==3:
+ lines.append('cubic\n')
+ elif self.norder==4:
+ lines.append('quartic\n')
+ elif self.norder==5:
+ lines.append('quintic\n')
+ else:
+ raise ValueError, "Drizzle cannot handle poly distortions of order %d"%self.norder
+
+ str = '%16.8f %16.8g %16.8g %16.8g %16.8g \n'% (x0,cx[1,1],cx[1,0],cx[2,2],cx[2,1])
+ lines.append(str)
+ str = '%16.8g %16.8g %16.8g %16.8g %16.8g \n'% (cx[2,0],cx[3,3],cx[3,2],cx[3,1],cx[3,0])
+ lines.append(str)
+ if self.norder>3:
+ str = '%16.8g %16.8g %16.8g %16.8g %16.8g \n'% (cx[4,4],cx[4,3],cx[4,2],cx[4,1],cx[4,0])
+ lines.append(str)
+ if self.norder>4:
+ str = '%16.8g %16.8g %16.8g %16.8g %16.8g %16.8g \n'% (cx[5,5],cx[5,4],cx[5,3],cx[5,2],cx[5,1],cx[5,0])
+ lines.append(str)
+ lines.append("\n")
+
+ str = '%16.8f %16.8g %16.8g %16.8g %16.8g \n'% (y0,cy[1,1],cy[1,0],cy[2,2],cy[2,1])
+ lines.append(str)
+ str = '%16.8g %16.8g %16.8g %16.8g %16.8g \n'% (cy[2,0],cy[3,3],cy[3,2],cy[3,1],cy[3,0])
+ lines.append(str)
+ if self.norder>3:
+ str = '%16.8g %16.8g %16.8g %16.8g %16.8g \n'% (cy[4,4],cy[4,3],cy[4,2],cy[4,1],cy[4,0])
+ lines.append(str)
+ if self.norder>4:
+ str = '%16.8g %16.8g %16.8g %16.8g %16.8g %16.8g \n'% (cy[5,5],cy[5,4],cy[5,3],cy[5,2],cy[5,1],cy[5,0])
+ lines.append(str)
+
+ output = open(tmpname,'w')
+ output.writelines(lines)
+ output.close()
+
+
+ def apply(self, pixpos,scale=1.0,order=None):
+ """
+ Apply coefficients to a pixel position or a list of positions.
+ This should be the same for all coefficients tables.
+ Return the geometrically-adjusted position
+ in arcseconds from the reference position as a tuple (x,y).
+
+ Compute delta from reference position
+ """
+
+ """
+ scale actually is a ratio of pscale/self.model.pscale
+ what is pscale?
+ """
+ if self.cx == None:
+ return pixpos[:,0],pixpos[:,1]
+
+ if order is None:
+ order = self.norder
+
+ # Apply in the same way that 'drizzle' would...
+ _cx = self.cx / (self.pscale * scale)
+ _cy = self.cy / (self.pscale * scale)
+ _convert = no
+ _p = pixpos
+
+ # Do NOT include any zero-point terms in CX,CY here
+ # as they should not be scaled by plate-scale like rest
+ # of coeffs... This makes the computations consistent
+ # with 'drizzle'. WJH 17-Feb-2004
+ _cx[0,0] = 0.
+ _cy[0,0] = 0.
+
+ if isinstance(_p,types.ListType) or isinstance(_p,types.TupleType):
+ _p = N.array(_p,dtype=N.float64)
+ _convert = yes
+
+ dxy = _p - (self.refpix['XREF'],self.refpix['YREF'])
+ # Apply coefficients from distortion model here...
+ c = _p * 0.
+ for i in range(order+1):
+ for j in range(i+1):
+ c[:,0] = c[:,0] + _cx[i][j] * pow(dxy[:,0],j) * pow(dxy[:,1],(i-j))
+ c[:,1] = c[:,1] + _cy[i][j] * pow(dxy[:,0],j) * pow(dxy[:,1],(i-j))
+ xc = c[:,0]
+ yc = c[:,1]
+
+ # Convert results back to same form as original input
+ if _convert:
+ xc = xc.tolist()
+ yc = yc.tolist()
+ # If a single tuple was input, return just a single tuple
+ if len(xc) == 1:
+ xc = xc[0]
+ yc = yc[0]
+
+ return xc,yc
+
+ def setPScaleCoeffs(self,pscale):
+ self.cx[1,1] = pscale
+ self.cy[1,0] = pscale
+
+ self.refpix['PSCALE'] = pscale
+ self.pscale = pscale
+
+
+class IDCModel(GeometryModel):
+ """
+ This class will open the IDCTAB, select proper row based on
+ chip/direction and populate cx,cy arrays.
+ We also need to read in SCALE, XCOM,YCOM, XREF,YREF as well.
+ """
+ def __init__(self, idcfile, date=None, chip=1, direction='forward',
+ filter1='CLEAR1',filter2='CLEAR2',offtab=None, binned=1):
+ GeometryModel.__init__(self)
+ #
+ # Norder must be derived from the coeffs file itself,
+ # then the arrays can be setup. Thus, it needs to be
+ # done in the sub-class, not in the base class.
+ # Read in table.
+ # Populate cx,cy,scale, and other variables here.
+ #
+ self.name = idcfile
+ self.cx,self.cy,self.refpix,self.norder = mutil.readIDCtab(idcfile,
+ chip=chip,direction=direction,filter1=filter1,filter2=filter2,
+ date=date, offtab=offtab)
+
+ if self.refpix.has_key('empty_model') and self.refpix['empty_model']:
+ pass
+ else:
+ self.refpix['PSCALE'] = self.refpix['PSCALE'] * binned
+ self.cx = self.cx * binned
+ self.cy = self.cy * binned
+ self.refpix['XREF'] = self.refpix['XREF'] / binned
+ self.refpix['YREF'] = self.refpix['YREF'] / binned
+ self.refpix['XSIZE'] = self.refpix['XSIZE'] / binned
+ self.refpix['YSIZE'] = self.refpix['YSIZE'] / binned
+
+ self.pscale = self.refpix['PSCALE']
+
+
+class WCSModel(GeometryModel):
+ """
+ This class sets up a distortion model based on coefficients
+ found in the image header.
+ """
+ def __init__(self,header,rootname):
+ GeometryModel.__init__(self)
+
+
+ if header.has_key('rootname'):
+ self.name = header['rootname']
+ else:
+ self.name = rootname
+ # Initialize all necessary distortion arrays with
+ # default model...
+ #self.cx,self.cy,self.refpix,self.order = mutil.defaultModel()
+
+ # Read in values from header, and update distortion arrays.
+ self.cx,self.cy,self.refpix,self.norder = mutil.readWCSCoeffs(header)
+
+ self.pscale = self.refpix['PSCALE']
+
+
+
+class DrizzleModel(GeometryModel):
+ """
+ This class will read in an ASCII Cubic
+ drizzle coeffs file and populate the cx,cy arrays.
+ """
+
+ def __init__(self, idcfile, scale = None):
+ GeometryModel.__init__(self)
+ #
+ # We now need to read in the file, populate cx,cy, and
+ # other variables as necessary.
+ #
+ self.name = idcfile
+ self.cx,self.cy,self.refpix,self.norder = mutil.readCubicTable(idcfile)
+
+ # scale is the ratio wcs.pscale/model.pscale.
+ # model.pscale for WFPC2 is passed from REFDATA.
+ # This is needed for WFPC2 binned data.
+
+ if scale != None:
+ self.pscale = scale
+ else:
+ self.pscale = self.refpix['PSCALE']
+
+ """
+ The above definition looks wrong.
+ In one case it's a ratio in the other it's pscale.
+
+ """
+
+class TraugerModel(GeometryModel):
+ """
+ This class will read in the ASCII Trauger coeffs
+ file, convert them to SIAF coefficients, then populate
+ the cx,cy arrays.
+ """
+ NORDER = 3
+
+ def __init__(self, idcfile,lam):
+ GeometryModel.__init__(self)
+ self.name = idcfile
+ self.cx,self.cy,self.refpix,self.norder = mutil.readTraugerTable(idcfile,lam)
+ self.pscale = self.refpix['PSCALE']
+ #
+ # Read in file here.
+ # Populate cx,cy, and other variables.
+ #
+
+
diff --git a/distortion/mutil.py b/distortion/mutil.py
new file mode 100644
index 0000000..c3f83f2
--- /dev/null
+++ b/distortion/mutil.py
@@ -0,0 +1,605 @@
+from pytools import fileutil
+import numpy as N
+import string
+import calendar
+
+# Set up IRAF-compatible Boolean values
+yes = True
+no = False
+
+# This function read the IDC table and generates the two matrices with
+# the geometric correction coefficients.
+#
+# INPUT: FITS object of open IDC table
+# OUTPUT: coefficient matrices for Fx and Fy
+#
+#### If 'tabname' == None: This should return a default, undistorted
+#### solution.
+#
+
+def readIDCtab (tabname, chip=1, date=None, direction='forward',
+ filter1=None,filter2=None, offtab=None):
+
+ """
+ Read IDCTAB, and optional OFFTAB if sepcified, and generate
+ the two matrices with the geometric correction coefficients.
+
+ If tabname == None, then return a default, undistorted solution.
+ If offtab is specified, dateobs also needs to be given.
+
+ """
+
+ # Return a default geometry model if no IDCTAB filename
+ # is given. This model will not distort the data in any way.
+ if tabname == None:
+ print 'Warning: No IDCTAB specified! No distortion correction will be applied.'
+ return defaultModel()
+
+ # Implement default values for filters here to avoid the default
+ # being overwritten by values of None passed by user.
+ if filter1 == None or filter1.find('CLEAR') == 0:
+ filter1 = 'CLEAR'
+ if filter2 == None or filter2.find('CLEAR') == 0:
+ filter2 = 'CLEAR'
+
+ # Insure that tabname is full filename with fully expanded
+ # IRAF variables; i.e. 'jref$mc41442gj_idc.fits' should get
+ # expanded to '/data/cdbs7/jref/mc41442gj_idc.fits' before
+ # being used here.
+ # Open up IDC table now...
+ try:
+ ftab = fileutil.openImage(tabname)
+ except:
+ err_str = "------------------------------------------------------------------------ \n"
+ err_str += "WARNING: the IDCTAB geometric distortion file specified in the image \n"
+ err_str += "header was not found on disk. Please verify that your environment \n"
+ err_str += "variable ('jref'/'uref'/'oref'/'nref') has been correctly defined. If \n"
+ err_str += "you do not have the IDCTAB file, you may obtain the latest version \n"
+ err_str += "of it from the relevant instrument page on the STScI HST website: \n"
+ err_str += "http://www.stsci.edu/hst/ For WFPC2, STIS and NICMOS data, the \n"
+ err_str += "present run will continue using the old coefficients provided in \n"
+ err_str += "the Dither Package (ca. 1995-1998). \n"
+ err_str += "------------------------------------------------------------------------ \n"
+ raise IOError,err_str
+
+ #First thing we need, is to read in the coefficients from the IDC
+ # table and populate the Fx and Fy matrices.
+
+ if ftab['PRIMARY'].header.has_key('DETECTOR'):
+ detector = ftab['PRIMARY'].header['DETECTOR']
+ else:
+ if ftab['PRIMARY'].header.has_key('CAMERA'):
+ detector = str(ftab['PRIMARY'].header['CAMERA'])
+ else:
+ detector = 1
+
+ # Set default filters for SBC
+ if detector == 'SBC':
+ if filter1 == 'CLEAR':
+ filter1 = 'F115LP'
+ filter2 = 'N/A'
+ if filter2 == 'CLEAR':
+ filter2 = 'N/A'
+
+ # Read FITS header to determine order of fit, i.e. k
+ norder = ftab['PRIMARY'].header['NORDER']
+ if norder < 3:
+ order = 3
+ else:
+ order = norder
+
+ fx = N.zeros(shape=(order+1,order+1),dtype=N.float64)
+ fy = N.zeros(shape=(order+1,order+1),dtype=N.float64)
+
+ #Determine row from which to get the coefficients.
+ # How many rows do we have in the table...
+ fshape = ftab[1].data.shape
+ colnames = ftab[1].data._names
+ row = -1
+
+ # Loop over all the rows looking for the one which corresponds
+ # to the value of CCDCHIP we are working on...
+ for i in xrange(fshape[0]):
+
+ try:
+ # Match FILTER combo to appropriate row,
+ #if there is a filter column in the IDCTAB...
+ if 'FILTER1' in colnames and 'FILTER2' in colnames:
+
+ filt1 = ftab[1].data.field('FILTER1')[i]
+ if filt1.find('CLEAR') > -1: filt1 = filt1[:5]
+
+ filt2 = ftab[1].data.field('FILTER2')[i]
+ if filt2.find('CLEAR') > -1: filt2 = filt2[:5]
+ else:
+ if 'OPT_ELEM' in colnames:
+ filt1 = ftab[1].data.field('OPT_ELEM')
+ if filt1.find('CLEAR') > -1: filt1 = filt1[:5]
+ else:
+ filt1 = filter1
+
+ if 'FILTER' in colnames:
+ _filt = ftab[1].data.field('FILTER')[i]
+ if _filt.find('CLEAR') > -1: _filt = _filt[:5]
+ if 'OPT_ELEM' in colnames:
+ filt2 = _filt
+ else:
+ filt1 = _filt
+ filt2 = 'CLEAR'
+ else:
+ filt2 = filter2
+ except:
+ # Otherwise assume all rows apply and compare to input filters...
+ filt1 = filter1
+ filt2 = filter2
+
+ if 'DETCHIP' in colnames:
+ detchip = ftab[1].data.field('DETCHIP')[i]
+ if not str(detchip).isdigit():
+ detchip = 1
+ else:
+ detchip = 1
+
+ if 'DIRECTION' in colnames:
+ direct = string.strip(string.lower(ftab[1].data.field('DIRECTION')[i]))
+ else:
+ direct = 'forward'
+
+ if filt1 == filter1.strip() and filt2 == filter2.strip():
+ if direct == direction.strip():
+ if int(detchip) == int(chip) or int(detchip) == -999:
+ row = i
+ break
+ if row < 0:
+ err_str = '\nProblem finding row in IDCTAB! Could not find row matching:\n'
+ err_str += ' CHIP: '+str(detchip)+'\n'
+ err_str += ' FILTERS: '+filter1+','+filter2+'\n'
+ ftab.close()
+ del ftab
+ raise LookupError,err_str
+ else:
+ print '- IDCTAB: Distortion model from row',str(row+1),'for chip',detchip,':',filter1.strip(),'and',filter2.strip()
+
+ # Read in V2REF and V3REF: this can either come from current table,
+ # or from an OFFTAB if time-dependent (i.e., for WFPC2)
+ theta = None
+ if 'V2REF' in colnames:
+ v2ref = ftab[1].data.field('V2REF')[row]
+ v3ref = ftab[1].data.field('V3REF')[row]
+ else:
+ # Read V2REF/V3REF from offset table (OFFTAB)
+ if offtab:
+ v2ref,v3ref,theta = readOfftab(offtab, date, chip=detchip)
+ else:
+ v2ref = 0.0
+ v3ref = 0.0
+
+ if theta == None:
+ if 'THETA' in colnames:
+ theta = ftab[1].data.field('THETA')[row]
+ else:
+ theta = 0.0
+
+ refpix = {}
+ refpix['XREF'] = ftab[1].data.field('XREF')[row]
+ refpix['YREF'] = ftab[1].data.field('YREF')[row]
+ refpix['XSIZE'] = ftab[1].data.field('XSIZE')[row]
+ refpix['YSIZE'] = ftab[1].data.field('YSIZE')[row]
+ refpix['PSCALE'] = round(ftab[1].data.field('SCALE')[row],8)
+ refpix['V2REF'] = v2ref
+ refpix['V3REF'] = v3ref
+ refpix['THETA'] = theta
+ refpix['XDELTA'] = 0.0
+ refpix['YDELTA'] = 0.0
+ refpix['DEFAULT_SCALE'] = yes
+ refpix['centered'] = no
+
+ # Now that we know which row to look at, read coefficients into the
+ # numeric arrays we have set up...
+ # Setup which column name convention the IDCTAB follows
+ # either: A,B or CX,CY
+ if 'CX10' in ftab[1].data._names:
+ cxstr = 'CX'
+ cystr = 'CY'
+ else:
+ cxstr = 'A'
+ cystr = 'B'
+
+ for i in xrange(norder+1):
+ if i > 0:
+ for j in xrange(i+1):
+ xcname = cxstr+str(i)+str(j)
+ ycname = cystr+str(i)+str(j)
+ fx[i,j] = ftab[1].data.field(xcname)[row]
+ fy[i,j] = ftab[1].data.field(ycname)[row]
+
+ ftab.close()
+ del ftab
+
+ # If CX11 is 1.0 and not equal to the PSCALE, then the
+ # coeffs need to be scaled
+
+ if fx[1,1] == 1.0 and abs(fx[1,1]) != refpix['PSCALE']:
+ fx *= refpix['PSCALE']
+ fy *= refpix['PSCALE']
+
+ # Return arrays and polynomial order read in from table.
+ # NOTE: XREF and YREF are stored in Fx,Fy arrays respectively.
+ return fx,fy,refpix,order
+
+def readOfftab(offtab, date, chip=None):
+
+
+#Read V2REF,V3REF from a specified offset table (OFFTAB).
+# Return a default geometry model if no IDCTAB filenam e
+# is given. This model will not distort the data in any way.
+
+ if offtab == None:
+ return 0.,0.
+
+ # Provide a default value for chip
+ if chip:
+ detchip = chip
+ else:
+ detchip = 1
+
+ # Open up IDC table now...
+ try:
+ ftab = fileutil.openImage(offtab)
+ except:
+ raise IOError,"Offset table '%s' not valid as specified!" % offtab
+
+ #Determine row from which to get the coefficients.
+ # How many rows do we have in the table...
+ fshape = ftab[1].data.shape
+ colnames = ftab[1].data._names
+ row = -1
+
+ row_start = None
+ row_end = None
+
+ v2end = None
+ v3end = None
+ date_end = None
+ theta_end = None
+
+ num_date = convertDate(date)
+ # Loop over all the rows looking for the one which corresponds
+ # to the value of CCDCHIP we are working on...
+ for ri in xrange(fshape[0]):
+ i = fshape[0] - ri - 1
+ if 'DETCHIP' in colnames:
+ detchip = ftab[1].data.field('DETCHIP')[i]
+ else:
+ detchip = 1
+
+ obsdate = convertDate(ftab[1].data.field('OBSDATE')[i])
+
+ # If the row is appropriate for the chip...
+ # Interpolate between dates
+ if int(detchip) == int(chip) or int(detchip) == -999:
+ if num_date <= obsdate:
+ date_end = obsdate
+ v2end = ftab[1].data.field('V2REF')[i]
+ v3end = ftab[1].data.field('V3REF')[i]
+ theta_end = ftab[1].data.field('THETA')[i]
+ row_end = i
+ continue
+
+ if row_end == None and (num_date > obsdate):
+ date_end = obsdate
+ v2end = ftab[1].data.field('V2REF')[i]
+ v3end = ftab[1].data.field('V3REF')[i]
+ theta_end = ftab[1].data.field('THETA')[i]
+ row_end = i
+ continue
+
+ if num_date > obsdate:
+ date_start = obsdate
+ v2start = ftab[1].data.field('V2REF')[i]
+ v3start = ftab[1].data.field('V3REF')[i]
+ theta_start = ftab[1].data.field('THETA')[i]
+ row_start = i
+ break
+
+ ftab.close()
+ del ftab
+
+ if row_start == None and row_end == None:
+ print 'Row corresponding to DETCHIP of ',detchip,' was not found!'
+ raise LookupError
+ elif row_start == None:
+ print '- OFFTAB: Offset defined by row',str(row_end+1)
+ else:
+ print '- OFFTAB: Offset interpolated from rows',str(row_start+1),'and',str(row_end+1)
+
+ # Now, do the interpolation for v2ref, v3ref, and theta
+ if row_start == None or row_end == row_start:
+ # We are processing an observation taken after the last calibration
+ date_start = date_end
+ v2start = v2end
+ v3start = v3end
+ _fraction = 0.
+ theta_start = theta_end
+ else:
+ _fraction = float((num_date - date_start)) / float((date_end - date_start))
+
+ v2ref = _fraction * (v2end - v2start) + v2start
+ v3ref = _fraction * (v3end - v3start) + v3start
+ theta = _fraction * (theta_end - theta_start) + theta_start
+
+ return v2ref,v3ref,theta
+
+def readWCSCoeffs(header):
+
+ #Read distortion coeffs from WCS header keywords and
+ #populate distortion coeffs arrays.
+
+ # Read in order for polynomials
+ _xorder = header['a_order']
+ _yorder = header['b_order']
+ order = max(max(_xorder,_yorder),3)
+
+ fx = N.zeros(shape=(order+1,order+1),dtype=N.float64)
+ fy = N.zeros(shape=(order+1,order+1),dtype=N.float64)
+
+ # Read in CD matrix
+ _cd11 = header['cd1_1']
+ _cd12 = header['cd1_2']
+ _cd21 = header['cd2_1']
+ _cd22 = header['cd2_2']
+ _cdmat = N.array([[_cd11,_cd12],[_cd21,_cd22]])
+ _theta = N.arctan2(-_cd12,_cd22)
+ _rotmat = N.array([[N.cos(_theta),N.sin(_theta)],
+ [-N.sin(_theta),N.cos(_theta)]])
+ _rCD = N.dot(_rotmat,_cdmat)
+ _skew = N.arcsin(-_rCD[1][0] / _rCD[0][0])
+ _scale = _rCD[0][0] * N.cos(_skew) * 3600.
+ _scale2 = _rCD[1][1] * 3600.
+
+ # Set up refpix
+ refpix = {}
+ refpix['XREF'] = header['crpix1']
+ refpix['YREF'] = header['crpix2']
+ refpix['XSIZE'] = header['naxis1']
+ refpix['YSIZE'] = header['naxis2']
+ refpix['PSCALE'] = _scale
+ refpix['V2REF'] = 0.
+ refpix['V3REF'] = 0.
+ refpix['THETA'] = RADTODEG(_theta)
+ refpix['XDELTA'] = 0.0
+ refpix['YDELTA'] = 0.0
+ refpix['DEFAULT_SCALE'] = yes
+ refpix['centered'] = yes
+
+
+ # Set up template for coeffs keyword names
+ cxstr = 'A_'
+ cystr = 'B_'
+ # Read coeffs into their own matrix
+ for i in xrange(_xorder+1):
+ for j in xrange(i+1):
+ xcname = cxstr+str(j)+'_'+str(i-j)
+ if header.has_key(xcname):
+ fx[i,j] = header[xcname]
+
+ # Extract Y coeffs separately as a different order may
+ # have been used to fit it.
+ for i in xrange(_yorder+1):
+ for j in xrange(i+1):
+ ycname = cystr+str(j)+'_'+str(i-j)
+ if header.has_key(ycname):
+ fy[i,j] = header[ycname]
+
+ # Now set the linear terms
+ fx[0][0] = 1.0
+ fy[0][0] = 1.0
+
+ return fx,fy,refpix,order
+
+
+def readTraugerTable(idcfile,wavelength):
+
+ # Return a default geometry model if no coefficients filename
+ # is given. This model will not distort the data in any way.
+ if idcfile == None:
+ return fileutil.defaultModel()
+
+ # Trauger coefficients only result in a cubic file...
+ order = 3
+ numco = 10
+ a_coeffs = [0] * numco
+ b_coeffs = [0] * numco
+ indx = _MgF2(wavelength)
+
+ ifile = open(idcfile,'r')
+ # Search for the first line of the coefficients
+ _line = fileutil.rAsciiLine(ifile)
+ while string.lower(_line[:7]) != 'trauger':
+ _line = fileutil.rAsciiLine(ifile)
+ # Read in each row of coefficients,split them into their values,
+ # and convert them into cubic coefficients based on
+ # index of refraction value for the given wavelength
+ # Build X coefficients from first 10 rows of Trauger coefficients
+ j = 0
+ while j < 20:
+ _line = fileutil.rAsciiLine(ifile)
+ if _line == '': continue
+ _lc = string.split(_line)
+ if j < 10:
+ a_coeffs[j] = float(_lc[0])+float(_lc[1])*(indx-1.5)+float(_lc[2])*(indx-1.5)**2
+ else:
+ b_coeffs[j-10] = float(_lc[0])+float(_lc[1])*(indx-1.5)+float(_lc[2])*(indx-1.5)**2
+ j = j + 1
+
+ ifile.close()
+ del ifile
+
+ # Now, convert the coefficients into a Numeric array
+ # with the right coefficients in the right place.
+ # Populate output values now...
+ fx = N.zeros(shape=(order+1,order+1),dtype=N.float64)
+ fy = N.zeros(shape=(order+1,order+1),dtype=N.float64)
+ # Assign the coefficients to their array positions
+ fx[0,0] = 0.
+ fx[1] = N.array([a_coeffs[2],a_coeffs[1],0.,0.],dtype=N.float64)
+ fx[2] = N.array([a_coeffs[5],a_coeffs[4],a_coeffs[3],0.],dtype=N.float64)
+ fx[3] = N.array([a_coeffs[9],a_coeffs[8],a_coeffs[7],a_coeffs[6]],dtype=N.float64)
+ fy[0,0] = 0.
+ fy[1] = N.array([b_coeffs[2],b_coeffs[1],0.,0.],dtype=N.float64)
+ fy[2] = N.array([b_coeffs[5],b_coeffs[4],b_coeffs[3],0.],dtype=N.float64)
+ fy[3] = N.array([b_coeffs[9],b_coeffs[8],b_coeffs[7],b_coeffs[6]],dtype=N.float64)
+
+ # Used in Pattern.computeOffsets()
+ refpix = {}
+ refpix['XREF'] = None
+ refpix['YREF'] = None
+ refpix['V2REF'] = None
+ refpix['V3REF'] = None
+ refpix['XDELTA'] = 0.
+ refpix['YDELTA'] = 0.
+ refpix['PSCALE'] = None
+ refpix['DEFAULT_SCALE'] = no
+ refpix['centered'] = yes
+
+ return fx,fy,refpix,order
+
+
+def readCubicTable(idcfile):
+ # Assumption: this will only be used for cubic file...
+ order = 3
+ # Also, this function does NOT perform any scaling on
+ # the coefficients, it simply passes along what is found
+ # in the file as is...
+
+ # Return a default geometry model if no coefficients filename
+ # is given. This model will not distort the data in any way.
+ if idcfile == None:
+ return fileutil.defaultModel()
+
+ ifile = open(idcfile,'r')
+ # Search for the first line of the coefficients
+ _line = fileutil.rAsciiLine(ifile)
+
+ _found = no
+ while _found == no:
+ if _line[:7] in ['cubic','quartic','quintic'] or _line[:4] == 'poly':
+ found = yes
+ break
+ _line = fileutil.rAsciiLine(ifile)
+
+ # Read in each row of coefficients, without line breaks or newlines
+ # split them into their values, and create a list for A coefficients
+ # and another list for the B coefficients
+ _line = fileutil.rAsciiLine(ifile)
+ a_coeffs = string.split(_line)
+
+ x0 = float(a_coeffs[0])
+ _line = fileutil.rAsciiLine(ifile)
+ a_coeffs[len(a_coeffs):] = string.split(_line)
+ # Scale coefficients for use within PyDrizzle
+ for i in range(len(a_coeffs)):
+ a_coeffs[i] = float(a_coeffs[i])
+
+ _line = fileutil.rAsciiLine(ifile)
+ b_coeffs = string.split(_line)
+ y0 = float(b_coeffs[0])
+ _line = fileutil.rAsciiLine(ifile)
+ b_coeffs[len(b_coeffs):] = string.split(_line)
+ # Scale coefficients for use within PyDrizzle
+ for i in range(len(b_coeffs)):
+ b_coeffs[i] = float(b_coeffs[i])
+
+ ifile.close()
+ del ifile
+ # Now, convert the coefficients into a Numeric array
+ # with the right coefficients in the right place.
+ # Populate output values now...
+ fx = N.zeros(shape=(order+1,order+1),dtype=N.float64)
+ fy = N.zeros(shape=(order+1,order+1),dtype=N.float64)
+ # Assign the coefficients to their array positions
+ fx[0,0] = 0.
+ fx[1] = N.array([a_coeffs[2],a_coeffs[1],0.,0.],dtype=N.float64)
+ fx[2] = N.array([a_coeffs[5],a_coeffs[4],a_coeffs[3],0.],dtype=N.float64)
+ fx[3] = N.array([a_coeffs[9],a_coeffs[8],a_coeffs[7],a_coeffs[6]],dtype=N.float64)
+ fy[0,0] = 0.
+ fy[1] = N.array([b_coeffs[2],b_coeffs[1],0.,0.],dtype=N.float64)
+ fy[2] = N.array([b_coeffs[5],b_coeffs[4],b_coeffs[3],0.],dtype=N.float64)
+ fy[3] = N.array([b_coeffs[9],b_coeffs[8],b_coeffs[7],b_coeffs[6]],dtype=N.float64)
+
+ # Used in Pattern.computeOffsets()
+ refpix = {}
+ refpix['XREF'] = None
+ refpix['YREF'] = None
+ refpix['V2REF'] = x0
+ refpix['V3REF'] = y0
+ refpix['XDELTA'] = 0.
+ refpix['YDELTA'] = 0.
+ refpix['PSCALE'] = None
+ refpix['DEFAULT_SCALE'] = no
+ refpix['centered'] = yes
+
+ return fx,fy,refpix,order
+
+def factorial(n):
+ """ Compute a factorial for integer n. """
+ m = 1
+ for i in range(int(n)):
+ m = m * (i+1)
+ return m
+
+def combin(j,n):
+ """ Return the combinatorial factor for j in n."""
+ return (factorial(j) / (factorial(n) * factorial( (j-n) ) ) )
+
+
+def defaultModel():
+ """ This function returns a default, non-distorting model
+ that can be used with the data.
+ """
+ order = 3
+
+ fx = N.zeros(shape=(order+1,order+1),dtype=N.float64)
+ fy = N.zeros(shape=(order+1,order+1),dtype=N.float64)
+
+ fx[1,1] = 1.
+ fy[1,0] = 1.
+
+ # Used in Pattern.computeOffsets()
+ refpix = {}
+ refpix['empty_model'] = yes
+ refpix['XREF'] = None
+ refpix['YREF'] = None
+ refpix['V2REF'] = 0.
+ refpix['XSIZE'] = 0.
+ refpix['YSIZE'] = 0.
+ refpix['V3REF'] = 0.
+ refpix['XDELTA'] = 0.
+ refpix['YDELTA'] = 0.
+ refpix['PSCALE'] = None
+ refpix['DEFAULT_SCALE'] = no
+ refpix['THETA'] = 0.
+ refpix['centered'] = yes
+ return fx,fy,refpix,order
+
+# Function to compute the index of refraction for MgF2 at
+# the specified wavelength for use with Trauger coefficients
+def _MgF2(lam):
+ _sig = pow((1.0e7/lam),2)
+ return N.sqrt(1.0 + 2.590355e10/(5.312993e10-_sig) +
+ 4.4543708e9/(11.17083e9-_sig) + 4.0838897e5/(1.766361e5-_sig))
+
+
+def convertDate(date):
+ """ Converts the DATE-OBS date string into an integer of the
+ number of seconds since 1970.0 using calendar.timegm().
+
+ INPUT: DATE-OBS in format of 'YYYY-MM-DD'.
+ OUTPUT: Date (integer) in seconds.
+ """
+
+ _dates = date.split('-')
+ _val = 0
+ _date_tuple = (int(_dates[0]), int(_dates[1]), int(_dates[2]), 0, 0, 0, 0, 0, 0)
+
+ return calendar.timegm(_date_tuple)