diff options
Diffstat (limited to 'distortion')
-rw-r--r-- | distortion/__init__.py | 0 | ||||
-rw-r--r-- | distortion/models.py | 360 | ||||
-rw-r--r-- | distortion/mutil.py | 605 |
3 files changed, 965 insertions, 0 deletions
diff --git a/distortion/__init__.py b/distortion/__init__.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/distortion/__init__.py diff --git a/distortion/models.py b/distortion/models.py new file mode 100644 index 0000000..cff9a46 --- /dev/null +++ b/distortion/models.py @@ -0,0 +1,360 @@ +import types + +# Import PyDrizzle utility modules +import mutil +import numpy as N +import mutil +from mutil import combin + +yes = True +no = False + +################# +# +# +# Geometry/Distortion Classes +# +# +################# + +class GeometryModel: + """ + Base class for Distortion model. + There will be a separate class for each type of + model/filetype used with drizzle, i.e., IDCModel and + DrizzleModel. + + Each class will know how to apply the distortion to a + single point and how to convert coefficients to an input table + suitable for the drizzle task. + + Coefficients will be stored in CX,CY arrays. + """ + # + # + # + # + # + # + # + NORDER = 3 + + def __init__(self): + " This will open the given file and determine its type and norder." + + # Method to read in coefficients from given table and + # populate the n arrays 'cx' and 'cy'. + # This will be different for each type of input file, + # IDCTAB vs. drizzle table. + + # Set these up here for all sub-classes to use... + # But, calculate norder and cx,cy arrays in detector specific classes. + self.cx = None + self.cy = None + self.refpix = None + self.norder = self.NORDER + # Keep track of computed zero-point for distortion coeffs + self.x0 = None + self.y0 = None + + # default values for these attributes + self.direction = 'forward' + + self.pscale = 1.0 + + def shift(self,cx,cy,xs,ys): + """ + Shift reference position of coefficients to new center + where (xs,ys) = old-reference-position - subarray/image center. + This will support creating coeffs files for drizzle which will + be applied relative to the center of the image, rather than relative + to the reference position of the chip. + """ + + _cxs = N.zeros(shape=cx.shape,dtype=cx.dtype) + _cys = N.zeros(shape=cy.shape,dtype=cy.dtype) + _k = self.norder + 1 + # loop over each input coefficient + for m in xrange(_k): + for n in xrange(_k): + if m >= n: + # For this coefficient, shift by xs/ys. + _ilist = range(m, _k) + # sum from m to k + for i in _ilist: + _jlist = range(n, i - (m-n)+1) + # sum from n to i-(m-n) + for j in _jlist: + _cxs[m,n] += cx[i,j]*combin(j,n)*combin((i-j),(m-n))*pow(xs,(j-n))*pow(ys,((i-j)-(m-n))) + _cys[m,n] += cy[i,j]*combin(j,n)*combin((i-j),(m-n))*pow(xs,(j-n))*pow(ys,((i-j)-(m-n))) + return _cxs,_cys + + def convert(self, tmpname, xref=None,yref=None,delta=yes): + """ + Open up an ASCII file, output coefficients in drizzle + format after converting them as necessary. + First, normalize these coefficients to what drizzle expects + Normalize the coefficients by the MODEL/output plate scale. + + 16-May-2002: + Revised to work with higher order polynomials by John Blakeslee. + 27-June-2002: + Added ability to shift coefficients to new center for support + of subarrays. + """ + cx = self.cx/self.pscale + cy = self.cy/self.pscale + x0 = self.refpix['XDELTA'] + cx[0,0] + y0 = self.refpix['YDELTA'] + cy[0,0] + #xr = self.refpix['XREF'] + #yr = self.refpix['YREF'] + xr = self.refpix['CHIP_XREF'] + yr = self.refpix['CHIP_YREF'] + + + + ''' + if xref != None: + # Shift coefficients for use with drizzle + _xs = xref - self.refpix['XREF'] + 1.0 + _ys = yref - self.refpix['YREF'] + 1.0 + + + if _xs != 0 or _ys != 0: + cxs,cys= self.shift(cx, cy, _xs, _ys) + cx = cxs + cy = cys + + # We only want to apply this shift to coeffs + # for subarray images. + if delta == no: + cxs[0,0] = cxs[0,0] - _xs + cys[0,0] = cys[0,0] - _ys + + # Now, apply only the difference introduced by the distortion.. + # i.e., (undistorted - original) shift. + x0 += cxs[0,0] + y0 += cys[0,0] + ''' + self.x0 = x0 #+ 1.0 + self.y0 = y0 #+ 1.0 + + # Now, write out the coefficients into an ASCII + # file in 'drizzle' format. + lines = [] + + + lines.append('# Polynomial distortion coefficients\n') + lines.append('# Extracted from "%s" \n'%self.name) + lines.append('refpix %f %f \n'%(xr,yr)) + if self.norder==3: + lines.append('cubic\n') + elif self.norder==4: + lines.append('quartic\n') + elif self.norder==5: + lines.append('quintic\n') + else: + raise ValueError, "Drizzle cannot handle poly distortions of order %d"%self.norder + + str = '%16.8f %16.8g %16.8g %16.8g %16.8g \n'% (x0,cx[1,1],cx[1,0],cx[2,2],cx[2,1]) + lines.append(str) + str = '%16.8g %16.8g %16.8g %16.8g %16.8g \n'% (cx[2,0],cx[3,3],cx[3,2],cx[3,1],cx[3,0]) + lines.append(str) + if self.norder>3: + str = '%16.8g %16.8g %16.8g %16.8g %16.8g \n'% (cx[4,4],cx[4,3],cx[4,2],cx[4,1],cx[4,0]) + lines.append(str) + if self.norder>4: + str = '%16.8g %16.8g %16.8g %16.8g %16.8g %16.8g \n'% (cx[5,5],cx[5,4],cx[5,3],cx[5,2],cx[5,1],cx[5,0]) + lines.append(str) + lines.append("\n") + + str = '%16.8f %16.8g %16.8g %16.8g %16.8g \n'% (y0,cy[1,1],cy[1,0],cy[2,2],cy[2,1]) + lines.append(str) + str = '%16.8g %16.8g %16.8g %16.8g %16.8g \n'% (cy[2,0],cy[3,3],cy[3,2],cy[3,1],cy[3,0]) + lines.append(str) + if self.norder>3: + str = '%16.8g %16.8g %16.8g %16.8g %16.8g \n'% (cy[4,4],cy[4,3],cy[4,2],cy[4,1],cy[4,0]) + lines.append(str) + if self.norder>4: + str = '%16.8g %16.8g %16.8g %16.8g %16.8g %16.8g \n'% (cy[5,5],cy[5,4],cy[5,3],cy[5,2],cy[5,1],cy[5,0]) + lines.append(str) + + output = open(tmpname,'w') + output.writelines(lines) + output.close() + + + def apply(self, pixpos,scale=1.0,order=None): + """ + Apply coefficients to a pixel position or a list of positions. + This should be the same for all coefficients tables. + Return the geometrically-adjusted position + in arcseconds from the reference position as a tuple (x,y). + + Compute delta from reference position + """ + + """ + scale actually is a ratio of pscale/self.model.pscale + what is pscale? + """ + if self.cx == None: + return pixpos[:,0],pixpos[:,1] + + if order is None: + order = self.norder + + # Apply in the same way that 'drizzle' would... + _cx = self.cx / (self.pscale * scale) + _cy = self.cy / (self.pscale * scale) + _convert = no + _p = pixpos + + # Do NOT include any zero-point terms in CX,CY here + # as they should not be scaled by plate-scale like rest + # of coeffs... This makes the computations consistent + # with 'drizzle'. WJH 17-Feb-2004 + _cx[0,0] = 0. + _cy[0,0] = 0. + + if isinstance(_p,types.ListType) or isinstance(_p,types.TupleType): + _p = N.array(_p,dtype=N.float64) + _convert = yes + + dxy = _p - (self.refpix['XREF'],self.refpix['YREF']) + # Apply coefficients from distortion model here... + c = _p * 0. + for i in range(order+1): + for j in range(i+1): + c[:,0] = c[:,0] + _cx[i][j] * pow(dxy[:,0],j) * pow(dxy[:,1],(i-j)) + c[:,1] = c[:,1] + _cy[i][j] * pow(dxy[:,0],j) * pow(dxy[:,1],(i-j)) + xc = c[:,0] + yc = c[:,1] + + # Convert results back to same form as original input + if _convert: + xc = xc.tolist() + yc = yc.tolist() + # If a single tuple was input, return just a single tuple + if len(xc) == 1: + xc = xc[0] + yc = yc[0] + + return xc,yc + + def setPScaleCoeffs(self,pscale): + self.cx[1,1] = pscale + self.cy[1,0] = pscale + + self.refpix['PSCALE'] = pscale + self.pscale = pscale + + +class IDCModel(GeometryModel): + """ + This class will open the IDCTAB, select proper row based on + chip/direction and populate cx,cy arrays. + We also need to read in SCALE, XCOM,YCOM, XREF,YREF as well. + """ + def __init__(self, idcfile, date=None, chip=1, direction='forward', + filter1='CLEAR1',filter2='CLEAR2',offtab=None, binned=1): + GeometryModel.__init__(self) + # + # Norder must be derived from the coeffs file itself, + # then the arrays can be setup. Thus, it needs to be + # done in the sub-class, not in the base class. + # Read in table. + # Populate cx,cy,scale, and other variables here. + # + self.name = idcfile + self.cx,self.cy,self.refpix,self.norder = mutil.readIDCtab(idcfile, + chip=chip,direction=direction,filter1=filter1,filter2=filter2, + date=date, offtab=offtab) + + if self.refpix.has_key('empty_model') and self.refpix['empty_model']: + pass + else: + self.refpix['PSCALE'] = self.refpix['PSCALE'] * binned + self.cx = self.cx * binned + self.cy = self.cy * binned + self.refpix['XREF'] = self.refpix['XREF'] / binned + self.refpix['YREF'] = self.refpix['YREF'] / binned + self.refpix['XSIZE'] = self.refpix['XSIZE'] / binned + self.refpix['YSIZE'] = self.refpix['YSIZE'] / binned + + self.pscale = self.refpix['PSCALE'] + + +class WCSModel(GeometryModel): + """ + This class sets up a distortion model based on coefficients + found in the image header. + """ + def __init__(self,header,rootname): + GeometryModel.__init__(self) + + + if header.has_key('rootname'): + self.name = header['rootname'] + else: + self.name = rootname + # Initialize all necessary distortion arrays with + # default model... + #self.cx,self.cy,self.refpix,self.order = mutil.defaultModel() + + # Read in values from header, and update distortion arrays. + self.cx,self.cy,self.refpix,self.norder = mutil.readWCSCoeffs(header) + + self.pscale = self.refpix['PSCALE'] + + + +class DrizzleModel(GeometryModel): + """ + This class will read in an ASCII Cubic + drizzle coeffs file and populate the cx,cy arrays. + """ + + def __init__(self, idcfile, scale = None): + GeometryModel.__init__(self) + # + # We now need to read in the file, populate cx,cy, and + # other variables as necessary. + # + self.name = idcfile + self.cx,self.cy,self.refpix,self.norder = mutil.readCubicTable(idcfile) + + # scale is the ratio wcs.pscale/model.pscale. + # model.pscale for WFPC2 is passed from REFDATA. + # This is needed for WFPC2 binned data. + + if scale != None: + self.pscale = scale + else: + self.pscale = self.refpix['PSCALE'] + + """ + The above definition looks wrong. + In one case it's a ratio in the other it's pscale. + + """ + +class TraugerModel(GeometryModel): + """ + This class will read in the ASCII Trauger coeffs + file, convert them to SIAF coefficients, then populate + the cx,cy arrays. + """ + NORDER = 3 + + def __init__(self, idcfile,lam): + GeometryModel.__init__(self) + self.name = idcfile + self.cx,self.cy,self.refpix,self.norder = mutil.readTraugerTable(idcfile,lam) + self.pscale = self.refpix['PSCALE'] + # + # Read in file here. + # Populate cx,cy, and other variables. + # + + diff --git a/distortion/mutil.py b/distortion/mutil.py new file mode 100644 index 0000000..c3f83f2 --- /dev/null +++ b/distortion/mutil.py @@ -0,0 +1,605 @@ +from pytools import fileutil +import numpy as N +import string +import calendar + +# Set up IRAF-compatible Boolean values +yes = True +no = False + +# This function read the IDC table and generates the two matrices with +# the geometric correction coefficients. +# +# INPUT: FITS object of open IDC table +# OUTPUT: coefficient matrices for Fx and Fy +# +#### If 'tabname' == None: This should return a default, undistorted +#### solution. +# + +def readIDCtab (tabname, chip=1, date=None, direction='forward', + filter1=None,filter2=None, offtab=None): + + """ + Read IDCTAB, and optional OFFTAB if sepcified, and generate + the two matrices with the geometric correction coefficients. + + If tabname == None, then return a default, undistorted solution. + If offtab is specified, dateobs also needs to be given. + + """ + + # Return a default geometry model if no IDCTAB filename + # is given. This model will not distort the data in any way. + if tabname == None: + print 'Warning: No IDCTAB specified! No distortion correction will be applied.' + return defaultModel() + + # Implement default values for filters here to avoid the default + # being overwritten by values of None passed by user. + if filter1 == None or filter1.find('CLEAR') == 0: + filter1 = 'CLEAR' + if filter2 == None or filter2.find('CLEAR') == 0: + filter2 = 'CLEAR' + + # Insure that tabname is full filename with fully expanded + # IRAF variables; i.e. 'jref$mc41442gj_idc.fits' should get + # expanded to '/data/cdbs7/jref/mc41442gj_idc.fits' before + # being used here. + # Open up IDC table now... + try: + ftab = fileutil.openImage(tabname) + except: + err_str = "------------------------------------------------------------------------ \n" + err_str += "WARNING: the IDCTAB geometric distortion file specified in the image \n" + err_str += "header was not found on disk. Please verify that your environment \n" + err_str += "variable ('jref'/'uref'/'oref'/'nref') has been correctly defined. If \n" + err_str += "you do not have the IDCTAB file, you may obtain the latest version \n" + err_str += "of it from the relevant instrument page on the STScI HST website: \n" + err_str += "http://www.stsci.edu/hst/ For WFPC2, STIS and NICMOS data, the \n" + err_str += "present run will continue using the old coefficients provided in \n" + err_str += "the Dither Package (ca. 1995-1998). \n" + err_str += "------------------------------------------------------------------------ \n" + raise IOError,err_str + + #First thing we need, is to read in the coefficients from the IDC + # table and populate the Fx and Fy matrices. + + if ftab['PRIMARY'].header.has_key('DETECTOR'): + detector = ftab['PRIMARY'].header['DETECTOR'] + else: + if ftab['PRIMARY'].header.has_key('CAMERA'): + detector = str(ftab['PRIMARY'].header['CAMERA']) + else: + detector = 1 + + # Set default filters for SBC + if detector == 'SBC': + if filter1 == 'CLEAR': + filter1 = 'F115LP' + filter2 = 'N/A' + if filter2 == 'CLEAR': + filter2 = 'N/A' + + # Read FITS header to determine order of fit, i.e. k + norder = ftab['PRIMARY'].header['NORDER'] + if norder < 3: + order = 3 + else: + order = norder + + fx = N.zeros(shape=(order+1,order+1),dtype=N.float64) + fy = N.zeros(shape=(order+1,order+1),dtype=N.float64) + + #Determine row from which to get the coefficients. + # How many rows do we have in the table... + fshape = ftab[1].data.shape + colnames = ftab[1].data._names + row = -1 + + # Loop over all the rows looking for the one which corresponds + # to the value of CCDCHIP we are working on... + for i in xrange(fshape[0]): + + try: + # Match FILTER combo to appropriate row, + #if there is a filter column in the IDCTAB... + if 'FILTER1' in colnames and 'FILTER2' in colnames: + + filt1 = ftab[1].data.field('FILTER1')[i] + if filt1.find('CLEAR') > -1: filt1 = filt1[:5] + + filt2 = ftab[1].data.field('FILTER2')[i] + if filt2.find('CLEAR') > -1: filt2 = filt2[:5] + else: + if 'OPT_ELEM' in colnames: + filt1 = ftab[1].data.field('OPT_ELEM') + if filt1.find('CLEAR') > -1: filt1 = filt1[:5] + else: + filt1 = filter1 + + if 'FILTER' in colnames: + _filt = ftab[1].data.field('FILTER')[i] + if _filt.find('CLEAR') > -1: _filt = _filt[:5] + if 'OPT_ELEM' in colnames: + filt2 = _filt + else: + filt1 = _filt + filt2 = 'CLEAR' + else: + filt2 = filter2 + except: + # Otherwise assume all rows apply and compare to input filters... + filt1 = filter1 + filt2 = filter2 + + if 'DETCHIP' in colnames: + detchip = ftab[1].data.field('DETCHIP')[i] + if not str(detchip).isdigit(): + detchip = 1 + else: + detchip = 1 + + if 'DIRECTION' in colnames: + direct = string.strip(string.lower(ftab[1].data.field('DIRECTION')[i])) + else: + direct = 'forward' + + if filt1 == filter1.strip() and filt2 == filter2.strip(): + if direct == direction.strip(): + if int(detchip) == int(chip) or int(detchip) == -999: + row = i + break + if row < 0: + err_str = '\nProblem finding row in IDCTAB! Could not find row matching:\n' + err_str += ' CHIP: '+str(detchip)+'\n' + err_str += ' FILTERS: '+filter1+','+filter2+'\n' + ftab.close() + del ftab + raise LookupError,err_str + else: + print '- IDCTAB: Distortion model from row',str(row+1),'for chip',detchip,':',filter1.strip(),'and',filter2.strip() + + # Read in V2REF and V3REF: this can either come from current table, + # or from an OFFTAB if time-dependent (i.e., for WFPC2) + theta = None + if 'V2REF' in colnames: + v2ref = ftab[1].data.field('V2REF')[row] + v3ref = ftab[1].data.field('V3REF')[row] + else: + # Read V2REF/V3REF from offset table (OFFTAB) + if offtab: + v2ref,v3ref,theta = readOfftab(offtab, date, chip=detchip) + else: + v2ref = 0.0 + v3ref = 0.0 + + if theta == None: + if 'THETA' in colnames: + theta = ftab[1].data.field('THETA')[row] + else: + theta = 0.0 + + refpix = {} + refpix['XREF'] = ftab[1].data.field('XREF')[row] + refpix['YREF'] = ftab[1].data.field('YREF')[row] + refpix['XSIZE'] = ftab[1].data.field('XSIZE')[row] + refpix['YSIZE'] = ftab[1].data.field('YSIZE')[row] + refpix['PSCALE'] = round(ftab[1].data.field('SCALE')[row],8) + refpix['V2REF'] = v2ref + refpix['V3REF'] = v3ref + refpix['THETA'] = theta + refpix['XDELTA'] = 0.0 + refpix['YDELTA'] = 0.0 + refpix['DEFAULT_SCALE'] = yes + refpix['centered'] = no + + # Now that we know which row to look at, read coefficients into the + # numeric arrays we have set up... + # Setup which column name convention the IDCTAB follows + # either: A,B or CX,CY + if 'CX10' in ftab[1].data._names: + cxstr = 'CX' + cystr = 'CY' + else: + cxstr = 'A' + cystr = 'B' + + for i in xrange(norder+1): + if i > 0: + for j in xrange(i+1): + xcname = cxstr+str(i)+str(j) + ycname = cystr+str(i)+str(j) + fx[i,j] = ftab[1].data.field(xcname)[row] + fy[i,j] = ftab[1].data.field(ycname)[row] + + ftab.close() + del ftab + + # If CX11 is 1.0 and not equal to the PSCALE, then the + # coeffs need to be scaled + + if fx[1,1] == 1.0 and abs(fx[1,1]) != refpix['PSCALE']: + fx *= refpix['PSCALE'] + fy *= refpix['PSCALE'] + + # Return arrays and polynomial order read in from table. + # NOTE: XREF and YREF are stored in Fx,Fy arrays respectively. + return fx,fy,refpix,order + +def readOfftab(offtab, date, chip=None): + + +#Read V2REF,V3REF from a specified offset table (OFFTAB). +# Return a default geometry model if no IDCTAB filenam e +# is given. This model will not distort the data in any way. + + if offtab == None: + return 0.,0. + + # Provide a default value for chip + if chip: + detchip = chip + else: + detchip = 1 + + # Open up IDC table now... + try: + ftab = fileutil.openImage(offtab) + except: + raise IOError,"Offset table '%s' not valid as specified!" % offtab + + #Determine row from which to get the coefficients. + # How many rows do we have in the table... + fshape = ftab[1].data.shape + colnames = ftab[1].data._names + row = -1 + + row_start = None + row_end = None + + v2end = None + v3end = None + date_end = None + theta_end = None + + num_date = convertDate(date) + # Loop over all the rows looking for the one which corresponds + # to the value of CCDCHIP we are working on... + for ri in xrange(fshape[0]): + i = fshape[0] - ri - 1 + if 'DETCHIP' in colnames: + detchip = ftab[1].data.field('DETCHIP')[i] + else: + detchip = 1 + + obsdate = convertDate(ftab[1].data.field('OBSDATE')[i]) + + # If the row is appropriate for the chip... + # Interpolate between dates + if int(detchip) == int(chip) or int(detchip) == -999: + if num_date <= obsdate: + date_end = obsdate + v2end = ftab[1].data.field('V2REF')[i] + v3end = ftab[1].data.field('V3REF')[i] + theta_end = ftab[1].data.field('THETA')[i] + row_end = i + continue + + if row_end == None and (num_date > obsdate): + date_end = obsdate + v2end = ftab[1].data.field('V2REF')[i] + v3end = ftab[1].data.field('V3REF')[i] + theta_end = ftab[1].data.field('THETA')[i] + row_end = i + continue + + if num_date > obsdate: + date_start = obsdate + v2start = ftab[1].data.field('V2REF')[i] + v3start = ftab[1].data.field('V3REF')[i] + theta_start = ftab[1].data.field('THETA')[i] + row_start = i + break + + ftab.close() + del ftab + + if row_start == None and row_end == None: + print 'Row corresponding to DETCHIP of ',detchip,' was not found!' + raise LookupError + elif row_start == None: + print '- OFFTAB: Offset defined by row',str(row_end+1) + else: + print '- OFFTAB: Offset interpolated from rows',str(row_start+1),'and',str(row_end+1) + + # Now, do the interpolation for v2ref, v3ref, and theta + if row_start == None or row_end == row_start: + # We are processing an observation taken after the last calibration + date_start = date_end + v2start = v2end + v3start = v3end + _fraction = 0. + theta_start = theta_end + else: + _fraction = float((num_date - date_start)) / float((date_end - date_start)) + + v2ref = _fraction * (v2end - v2start) + v2start + v3ref = _fraction * (v3end - v3start) + v3start + theta = _fraction * (theta_end - theta_start) + theta_start + + return v2ref,v3ref,theta + +def readWCSCoeffs(header): + + #Read distortion coeffs from WCS header keywords and + #populate distortion coeffs arrays. + + # Read in order for polynomials + _xorder = header['a_order'] + _yorder = header['b_order'] + order = max(max(_xorder,_yorder),3) + + fx = N.zeros(shape=(order+1,order+1),dtype=N.float64) + fy = N.zeros(shape=(order+1,order+1),dtype=N.float64) + + # Read in CD matrix + _cd11 = header['cd1_1'] + _cd12 = header['cd1_2'] + _cd21 = header['cd2_1'] + _cd22 = header['cd2_2'] + _cdmat = N.array([[_cd11,_cd12],[_cd21,_cd22]]) + _theta = N.arctan2(-_cd12,_cd22) + _rotmat = N.array([[N.cos(_theta),N.sin(_theta)], + [-N.sin(_theta),N.cos(_theta)]]) + _rCD = N.dot(_rotmat,_cdmat) + _skew = N.arcsin(-_rCD[1][0] / _rCD[0][0]) + _scale = _rCD[0][0] * N.cos(_skew) * 3600. + _scale2 = _rCD[1][1] * 3600. + + # Set up refpix + refpix = {} + refpix['XREF'] = header['crpix1'] + refpix['YREF'] = header['crpix2'] + refpix['XSIZE'] = header['naxis1'] + refpix['YSIZE'] = header['naxis2'] + refpix['PSCALE'] = _scale + refpix['V2REF'] = 0. + refpix['V3REF'] = 0. + refpix['THETA'] = RADTODEG(_theta) + refpix['XDELTA'] = 0.0 + refpix['YDELTA'] = 0.0 + refpix['DEFAULT_SCALE'] = yes + refpix['centered'] = yes + + + # Set up template for coeffs keyword names + cxstr = 'A_' + cystr = 'B_' + # Read coeffs into their own matrix + for i in xrange(_xorder+1): + for j in xrange(i+1): + xcname = cxstr+str(j)+'_'+str(i-j) + if header.has_key(xcname): + fx[i,j] = header[xcname] + + # Extract Y coeffs separately as a different order may + # have been used to fit it. + for i in xrange(_yorder+1): + for j in xrange(i+1): + ycname = cystr+str(j)+'_'+str(i-j) + if header.has_key(ycname): + fy[i,j] = header[ycname] + + # Now set the linear terms + fx[0][0] = 1.0 + fy[0][0] = 1.0 + + return fx,fy,refpix,order + + +def readTraugerTable(idcfile,wavelength): + + # Return a default geometry model if no coefficients filename + # is given. This model will not distort the data in any way. + if idcfile == None: + return fileutil.defaultModel() + + # Trauger coefficients only result in a cubic file... + order = 3 + numco = 10 + a_coeffs = [0] * numco + b_coeffs = [0] * numco + indx = _MgF2(wavelength) + + ifile = open(idcfile,'r') + # Search for the first line of the coefficients + _line = fileutil.rAsciiLine(ifile) + while string.lower(_line[:7]) != 'trauger': + _line = fileutil.rAsciiLine(ifile) + # Read in each row of coefficients,split them into their values, + # and convert them into cubic coefficients based on + # index of refraction value for the given wavelength + # Build X coefficients from first 10 rows of Trauger coefficients + j = 0 + while j < 20: + _line = fileutil.rAsciiLine(ifile) + if _line == '': continue + _lc = string.split(_line) + if j < 10: + a_coeffs[j] = float(_lc[0])+float(_lc[1])*(indx-1.5)+float(_lc[2])*(indx-1.5)**2 + else: + b_coeffs[j-10] = float(_lc[0])+float(_lc[1])*(indx-1.5)+float(_lc[2])*(indx-1.5)**2 + j = j + 1 + + ifile.close() + del ifile + + # Now, convert the coefficients into a Numeric array + # with the right coefficients in the right place. + # Populate output values now... + fx = N.zeros(shape=(order+1,order+1),dtype=N.float64) + fy = N.zeros(shape=(order+1,order+1),dtype=N.float64) + # Assign the coefficients to their array positions + fx[0,0] = 0. + fx[1] = N.array([a_coeffs[2],a_coeffs[1],0.,0.],dtype=N.float64) + fx[2] = N.array([a_coeffs[5],a_coeffs[4],a_coeffs[3],0.],dtype=N.float64) + fx[3] = N.array([a_coeffs[9],a_coeffs[8],a_coeffs[7],a_coeffs[6]],dtype=N.float64) + fy[0,0] = 0. + fy[1] = N.array([b_coeffs[2],b_coeffs[1],0.,0.],dtype=N.float64) + fy[2] = N.array([b_coeffs[5],b_coeffs[4],b_coeffs[3],0.],dtype=N.float64) + fy[3] = N.array([b_coeffs[9],b_coeffs[8],b_coeffs[7],b_coeffs[6]],dtype=N.float64) + + # Used in Pattern.computeOffsets() + refpix = {} + refpix['XREF'] = None + refpix['YREF'] = None + refpix['V2REF'] = None + refpix['V3REF'] = None + refpix['XDELTA'] = 0. + refpix['YDELTA'] = 0. + refpix['PSCALE'] = None + refpix['DEFAULT_SCALE'] = no + refpix['centered'] = yes + + return fx,fy,refpix,order + + +def readCubicTable(idcfile): + # Assumption: this will only be used for cubic file... + order = 3 + # Also, this function does NOT perform any scaling on + # the coefficients, it simply passes along what is found + # in the file as is... + + # Return a default geometry model if no coefficients filename + # is given. This model will not distort the data in any way. + if idcfile == None: + return fileutil.defaultModel() + + ifile = open(idcfile,'r') + # Search for the first line of the coefficients + _line = fileutil.rAsciiLine(ifile) + + _found = no + while _found == no: + if _line[:7] in ['cubic','quartic','quintic'] or _line[:4] == 'poly': + found = yes + break + _line = fileutil.rAsciiLine(ifile) + + # Read in each row of coefficients, without line breaks or newlines + # split them into their values, and create a list for A coefficients + # and another list for the B coefficients + _line = fileutil.rAsciiLine(ifile) + a_coeffs = string.split(_line) + + x0 = float(a_coeffs[0]) + _line = fileutil.rAsciiLine(ifile) + a_coeffs[len(a_coeffs):] = string.split(_line) + # Scale coefficients for use within PyDrizzle + for i in range(len(a_coeffs)): + a_coeffs[i] = float(a_coeffs[i]) + + _line = fileutil.rAsciiLine(ifile) + b_coeffs = string.split(_line) + y0 = float(b_coeffs[0]) + _line = fileutil.rAsciiLine(ifile) + b_coeffs[len(b_coeffs):] = string.split(_line) + # Scale coefficients for use within PyDrizzle + for i in range(len(b_coeffs)): + b_coeffs[i] = float(b_coeffs[i]) + + ifile.close() + del ifile + # Now, convert the coefficients into a Numeric array + # with the right coefficients in the right place. + # Populate output values now... + fx = N.zeros(shape=(order+1,order+1),dtype=N.float64) + fy = N.zeros(shape=(order+1,order+1),dtype=N.float64) + # Assign the coefficients to their array positions + fx[0,0] = 0. + fx[1] = N.array([a_coeffs[2],a_coeffs[1],0.,0.],dtype=N.float64) + fx[2] = N.array([a_coeffs[5],a_coeffs[4],a_coeffs[3],0.],dtype=N.float64) + fx[3] = N.array([a_coeffs[9],a_coeffs[8],a_coeffs[7],a_coeffs[6]],dtype=N.float64) + fy[0,0] = 0. + fy[1] = N.array([b_coeffs[2],b_coeffs[1],0.,0.],dtype=N.float64) + fy[2] = N.array([b_coeffs[5],b_coeffs[4],b_coeffs[3],0.],dtype=N.float64) + fy[3] = N.array([b_coeffs[9],b_coeffs[8],b_coeffs[7],b_coeffs[6]],dtype=N.float64) + + # Used in Pattern.computeOffsets() + refpix = {} + refpix['XREF'] = None + refpix['YREF'] = None + refpix['V2REF'] = x0 + refpix['V3REF'] = y0 + refpix['XDELTA'] = 0. + refpix['YDELTA'] = 0. + refpix['PSCALE'] = None + refpix['DEFAULT_SCALE'] = no + refpix['centered'] = yes + + return fx,fy,refpix,order + +def factorial(n): + """ Compute a factorial for integer n. """ + m = 1 + for i in range(int(n)): + m = m * (i+1) + return m + +def combin(j,n): + """ Return the combinatorial factor for j in n.""" + return (factorial(j) / (factorial(n) * factorial( (j-n) ) ) ) + + +def defaultModel(): + """ This function returns a default, non-distorting model + that can be used with the data. + """ + order = 3 + + fx = N.zeros(shape=(order+1,order+1),dtype=N.float64) + fy = N.zeros(shape=(order+1,order+1),dtype=N.float64) + + fx[1,1] = 1. + fy[1,0] = 1. + + # Used in Pattern.computeOffsets() + refpix = {} + refpix['empty_model'] = yes + refpix['XREF'] = None + refpix['YREF'] = None + refpix['V2REF'] = 0. + refpix['XSIZE'] = 0. + refpix['YSIZE'] = 0. + refpix['V3REF'] = 0. + refpix['XDELTA'] = 0. + refpix['YDELTA'] = 0. + refpix['PSCALE'] = None + refpix['DEFAULT_SCALE'] = no + refpix['THETA'] = 0. + refpix['centered'] = yes + return fx,fy,refpix,order + +# Function to compute the index of refraction for MgF2 at +# the specified wavelength for use with Trauger coefficients +def _MgF2(lam): + _sig = pow((1.0e7/lam),2) + return N.sqrt(1.0 + 2.590355e10/(5.312993e10-_sig) + + 4.4543708e9/(11.17083e9-_sig) + 4.0838897e5/(1.766361e5-_sig)) + + +def convertDate(date): + """ Converts the DATE-OBS date string into an integer of the + number of seconds since 1970.0 using calendar.timegm(). + + INPUT: DATE-OBS in format of 'YYYY-MM-DD'. + OUTPUT: Date (integer) in seconds. + """ + + _dates = date.split('-') + _val = 0 + _date_tuple = (int(_dates[0]), int(_dates[1]), int(_dates[2]), 0, 0, 0, 0, 0, 0) + + return calendar.timegm(_date_tuple) |