diff options
author | Nadia Dencheva <nadia.astropy@gmail.com> | 2016-08-07 12:23:24 -0400 |
---|---|---|
committer | GitHub <noreply@github.com> | 2016-08-07 12:23:24 -0400 |
commit | a2e16e39b0eb8ac0251a6473c60fee0d437c3a5f (patch) | |
tree | 7b6771e9c1974852eb8a283507677651078ce32a /stwcs/distortion/mutil.py | |
parent | 86d1bc5a77491770d45b86e5cf18b79ded68fb9b (diff) | |
parent | 2dc0676bc00f66a87737e78484876051633b731a (diff) | |
download | stwcs_hcf-a2e16e39b0eb8ac0251a6473c60fee0d437c3a5f.tar.gz |
Merge pull request #9 from nden/refactor-and-tests
restructure and add stwcs tests
Diffstat (limited to 'stwcs/distortion/mutil.py')
-rw-r--r-- | stwcs/distortion/mutil.py | 703 |
1 files changed, 703 insertions, 0 deletions
diff --git a/stwcs/distortion/mutil.py b/stwcs/distortion/mutil.py new file mode 100644 index 0000000..ed6a1ea --- /dev/null +++ b/stwcs/distortion/mutil.py @@ -0,0 +1,703 @@ +from __future__ import division, print_function # confidence high + +from stsci.tools import fileutil +import numpy as np +import calendar + +# Set up IRAF-compatible Boolean values +yes = True +no = False + +# This function read the IDC table and generates the two matrices with +# the geometric correction coefficients. +# +# INPUT: FITS object of open IDC table +# OUTPUT: coefficient matrices for Fx and Fy +# +#### If 'tabname' == None: This should return a default, undistorted +#### solution. +# + +def readIDCtab (tabname, chip=1, date=None, direction='forward', + filter1=None,filter2=None, offtab=None): + + """ + Read IDCTAB, and optional OFFTAB if sepcified, and generate + the two matrices with the geometric correction coefficients. + + If tabname == None, then return a default, undistorted solution. + If offtab is specified, dateobs also needs to be given. + + """ + + # Return a default geometry model if no IDCTAB filename + # is given. This model will not distort the data in any way. + if tabname == None: + print('Warning: No IDCTAB specified! No distortion correction will be applied.') + return defaultModel() + + # Implement default values for filters here to avoid the default + # being overwritten by values of None passed by user. + if filter1 == None or filter1.find('CLEAR') == 0 or filter1.strip() == '': + filter1 = 'CLEAR' + if filter2 == None or filter2.find('CLEAR') == 0 or filter2.strip() == '': + filter2 = 'CLEAR' + + # Insure that tabname is full filename with fully expanded + # IRAF variables; i.e. 'jref$mc41442gj_idc.fits' should get + # expanded to '/data/cdbs7/jref/mc41442gj_idc.fits' before + # being used here. + # Open up IDC table now... + try: + ftab = fileutil.openImage(tabname) + except: + err_str = "------------------------------------------------------------------------ \n" + err_str += "WARNING: the IDCTAB geometric distortion file specified in the image \n" + err_str += "header was not found on disk. Please verify that your environment \n" + err_str += "variable ('jref'/'uref'/'oref'/'nref') has been correctly defined. If \n" + err_str += "you do not have the IDCTAB file, you may obtain the latest version \n" + err_str += "of it from the relevant instrument page on the STScI HST website: \n" + err_str += "http://www.stsci.edu/hst/ For WFPC2, STIS and NICMOS data, the \n" + err_str += "present run will continue using the old coefficients provided in \n" + err_str += "the Dither Package (ca. 1995-1998). \n" + err_str += "------------------------------------------------------------------------ \n" + raise IOError(err_str) + + #First thing we need, is to read in the coefficients from the IDC + # table and populate the Fx and Fy matrices. + + if 'DETECTOR' in ftab['PRIMARY'].header: + detector = ftab['PRIMARY'].header['DETECTOR'] + else: + if 'CAMERA' in ftab['PRIMARY'].header: + detector = str(ftab['PRIMARY'].header['CAMERA']) + else: + detector = 1 + # First, read in TDD coeffs if present + phdr = ftab['PRIMARY'].header + instrument = phdr['INSTRUME'] + if instrument == 'ACS' and detector == 'WFC': + skew_coeffs = read_tdd_coeffs(phdr, chip=chip) + else: + skew_coeffs = None + + # Set default filters for SBC + if detector == 'SBC': + if filter1 == 'CLEAR': + filter1 = 'F115LP' + filter2 = 'N/A' + if filter2 == 'CLEAR': + filter2 = 'N/A' + + # Read FITS header to determine order of fit, i.e. k + norder = ftab['PRIMARY'].header['NORDER'] + if norder < 3: + order = 3 + else: + order = norder + + fx = np.zeros(shape=(order+1,order+1),dtype=np.float64) + fy = np.zeros(shape=(order+1,order+1),dtype=np.float64) + + #Determine row from which to get the coefficients. + # How many rows do we have in the table... + fshape = ftab[1].data.shape + colnames = ftab[1].data.names + row = -1 + + # Loop over all the rows looking for the one which corresponds + # to the value of CCDCHIP we are working on... + for i in range(fshape[0]): + + try: + # Match FILTER combo to appropriate row, + #if there is a filter column in the IDCTAB... + if 'FILTER1' in colnames and 'FILTER2' in colnames: + + filt1 = ftab[1].data.field('FILTER1')[i] + if filt1.find('CLEAR') > -1: filt1 = filt1[:5] + + filt2 = ftab[1].data.field('FILTER2')[i] + if filt2.find('CLEAR') > -1: filt2 = filt2[:5] + else: + if 'OPT_ELEM' in colnames: + filt1 = ftab[1].data.field('OPT_ELEM') + if filt1.find('CLEAR') > -1: filt1 = filt1[:5] + else: + filt1 = filter1 + + if 'FILTER' in colnames: + _filt = ftab[1].data.field('FILTER')[i] + if _filt.find('CLEAR') > -1: _filt = _filt[:5] + if 'OPT_ELEM' in colnames: + filt2 = _filt + else: + filt1 = _filt + filt2 = 'CLEAR' + else: + filt2 = filter2 + except: + # Otherwise assume all rows apply and compare to input filters... + filt1 = filter1 + filt2 = filter2 + + if 'DETCHIP' in colnames: + detchip = ftab[1].data.field('DETCHIP')[i] + if not str(detchip).isdigit(): + detchip = 1 + else: + detchip = 1 + + if 'DIRECTION' in colnames: + direct = ftab[1].data.field('DIRECTION')[i].lower().strip() + else: + direct = 'forward' + + if filt1 == filter1.strip() and filt2 == filter2.strip(): + if direct == direction.strip(): + if int(detchip) == int(chip) or int(detchip) == -999: + row = i + break + + joinstr = ',' + if 'CLEAR' in filter1: + f1str = '' + joinstr = '' + else: + f1str = filter1.strip() + if 'CLEAR' in filter2: + f2str = '' + joinstr = '' + else: + f2str = filter2.strip() + filtstr = (joinstr.join([f1str,f2str])).strip() + if row < 0: + err_str = '\nProblem finding row in IDCTAB! Could not find row matching:\n' + err_str += ' CHIP: '+str(detchip)+'\n' + err_str += ' FILTERS: '+filtstr+'\n' + ftab.close() + del ftab + raise LookupError(err_str) + else: + print('- IDCTAB: Distortion model from row',str(row+1),'for chip',detchip,':',filtstr) + + # Read in V2REF and V3REF: this can either come from current table, + # or from an OFFTAB if time-dependent (i.e., for WFPC2) + theta = None + if 'V2REF' in colnames: + v2ref = ftab[1].data.field('V2REF')[row] + v3ref = ftab[1].data.field('V3REF')[row] + else: + # Read V2REF/V3REF from offset table (OFFTAB) + if offtab: + v2ref,v3ref,theta = readOfftab(offtab, date, chip=detchip) + else: + v2ref = 0.0 + v3ref = 0.0 + + if theta == None: + if 'THETA' in colnames: + theta = ftab[1].data.field('THETA')[row] + else: + theta = 0.0 + + refpix = {} + refpix['XREF'] = ftab[1].data.field('XREF')[row] + refpix['YREF'] = ftab[1].data.field('YREF')[row] + refpix['XSIZE'] = ftab[1].data.field('XSIZE')[row] + refpix['YSIZE'] = ftab[1].data.field('YSIZE')[row] + refpix['PSCALE'] = round(ftab[1].data.field('SCALE')[row],8) + refpix['V2REF'] = v2ref + refpix['V3REF'] = v3ref + refpix['THETA'] = theta + refpix['XDELTA'] = 0.0 + refpix['YDELTA'] = 0.0 + refpix['DEFAULT_SCALE'] = yes + refpix['centered'] = no + refpix['skew_coeffs'] = skew_coeffs + # Now that we know which row to look at, read coefficients into the + # numeric arrays we have set up... + # Setup which column name convention the IDCTAB follows + # either: A,B or CX,CY + if 'CX10' in ftab[1].data.names: + cxstr = 'CX' + cystr = 'CY' + else: + cxstr = 'A' + cystr = 'B' + + for i in range(norder+1): + if i > 0: + for j in range(i+1): + xcname = cxstr+str(i)+str(j) + ycname = cystr+str(i)+str(j) + fx[i,j] = ftab[1].data.field(xcname)[row] + fy[i,j] = ftab[1].data.field(ycname)[row] + + ftab.close() + del ftab + + # If CX11 is 1.0 and not equal to the PSCALE, then the + # coeffs need to be scaled + + if fx[1,1] == 1.0 and abs(fx[1,1]) != refpix['PSCALE']: + fx *= refpix['PSCALE'] + fy *= refpix['PSCALE'] + + # Return arrays and polynomial order read in from table. + # NOTE: XREF and YREF are stored in Fx,Fy arrays respectively. + return fx,fy,refpix,order +# +# +# Time-dependent skew correction coefficients (only ACS/WFC) +# +# +def read_tdd_coeffs(phdr, chip=1): + ''' Read in the TDD related keywords from the PRIMARY header of the IDCTAB + ''' + # Insure we have an integer form of chip + ic = int(chip) + + skew_coeffs = {} + skew_coeffs['TDDORDER'] = 0 + skew_coeffs['TDD_DATE'] = "" + skew_coeffs['TDD_A'] = None + skew_coeffs['TDD_B'] = None + skew_coeffs['TDD_CY_BETA'] = None + skew_coeffs['TDD_CY_ALPHA'] = None + skew_coeffs['TDD_CX_BETA'] = None + skew_coeffs['TDD_CX_ALPHA'] = None + + # Skew-based TDD coefficients + skew_terms = ['TDD_CTB','TDD_CTA','TDD_CYA','TDD_CYB','TDD_CXA','TDD_CXB'] + for s in skew_terms: + skew_coeffs[s] = None + + if "TDD_CTB1" in phdr: + # We have the 2015-calibrated TDD correction to apply + # This correction is based on correcting the skew in the linear terms + # not just set polynomial terms + print("Using 2015-calibrated VAFACTOR-corrected TDD correction...") + skew_coeffs['TDD_DATE'] = phdr['TDD_DATE'] + for s in skew_terms: + skew_coeffs[s] = phdr.get('{0}{1}'.format(s,ic),None) + + elif "TDD_CYB1" in phdr: + # We have 2014-calibrated TDD correction to apply, not J.A.-derived values + print("Using 2014-calibrated TDD correction...") + skew_coeffs['TDD_DATE'] = phdr['TDD_DATE'] + # Read coefficients for TDD Y coefficient + cyb_kw = 'TDD_CYB{0}'.format(int(chip)) + skew_coeffs['TDD_CY_BETA'] = phdr.get(cyb_kw,None) + cya_kw = 'TDD_CYA{0}'.format(int(chip)) + tdd_cya = phdr.get(cya_kw,None) + if tdd_cya == 0 or tdd_cya == 'N/A': tdd_cya = None + skew_coeffs['TDD_CY_ALPHA'] = tdd_cya + + # Read coefficients for TDD X coefficient + cxb_kw = 'TDD_CXB{0}'.format(int(chip)) + skew_coeffs['TDD_CX_BETA'] = phdr.get(cxb_kw,None) + cxa_kw = 'TDD_CXA{0}'.format(int(chip)) + tdd_cxa = phdr.get(cxa_kw,None) + if tdd_cxa == 0 or tdd_cxa == 'N/A': tdd_cxa = None + skew_coeffs['TDD_CX_ALPHA'] = tdd_cxa + + else: + if "TDDORDER" in phdr: + n = int(phdr["TDDORDER"]) + else: + print('TDDORDER kw not present, using default TDD correction') + return None + + a = np.zeros((n+1,), np.float64) + b = np.zeros((n+1,), np.float64) + for i in range(n+1): + a[i] = phdr.get(("TDD_A%d" % i), 0.0) + b[i] = phdr.get(("TDD_B%d" % i), 0.0) + if (a==0).all() and (b==0).all(): + print('Warning: TDD_A and TDD_B coeffiecients have values of 0, \n \ + but TDDORDER is %d.' % TDDORDER) + + skew_coeffs['TDDORDER'] = n + skew_coeffs['TDD_DATE'] = phdr['TDD_DATE'] + skew_coeffs['TDD_A'] = a + skew_coeffs['TDD_B'] = b + + return skew_coeffs + +def readOfftab(offtab, date, chip=None): + + +#Read V2REF,V3REF from a specified offset table (OFFTAB). +# Return a default geometry model if no IDCTAB filenam e +# is given. This model will not distort the data in any way. + + if offtab == None: + return 0.,0. + + # Provide a default value for chip + if chip: + detchip = chip + else: + detchip = 1 + + # Open up IDC table now... + try: + ftab = fileutil.openImage(offtab) + except: + raise IOError("Offset table '%s' not valid as specified!" % offtab) + + #Determine row from which to get the coefficients. + # How many rows do we have in the table... + fshape = ftab[1].data.shape + colnames = ftab[1].data.names + row = -1 + + row_start = None + row_end = None + + v2end = None + v3end = None + date_end = None + theta_end = None + + num_date = convertDate(date) + # Loop over all the rows looking for the one which corresponds + # to the value of CCDCHIP we are working on... + for ri in range(fshape[0]): + i = fshape[0] - ri - 1 + if 'DETCHIP' in colnames: + detchip = ftab[1].data.field('DETCHIP')[i] + else: + detchip = 1 + + obsdate = convertDate(ftab[1].data.field('OBSDATE')[i]) + + # If the row is appropriate for the chip... + # Interpolate between dates + if int(detchip) == int(chip) or int(detchip) == -999: + if num_date <= obsdate: + date_end = obsdate + v2end = ftab[1].data.field('V2REF')[i] + v3end = ftab[1].data.field('V3REF')[i] + theta_end = ftab[1].data.field('THETA')[i] + row_end = i + continue + + if row_end == None and (num_date > obsdate): + date_end = obsdate + v2end = ftab[1].data.field('V2REF')[i] + v3end = ftab[1].data.field('V3REF')[i] + theta_end = ftab[1].data.field('THETA')[i] + row_end = i + continue + + if num_date > obsdate: + date_start = obsdate + v2start = ftab[1].data.field('V2REF')[i] + v3start = ftab[1].data.field('V3REF')[i] + theta_start = ftab[1].data.field('THETA')[i] + row_start = i + break + + ftab.close() + del ftab + + if row_start == None and row_end == None: + print('Row corresponding to DETCHIP of ',detchip,' was not found!') + raise LookupError + elif row_start == None: + print('- OFFTAB: Offset defined by row',str(row_end+1)) + else: + print('- OFFTAB: Offset interpolated from rows',str(row_start+1),'and',str(row_end+1)) + + # Now, do the interpolation for v2ref, v3ref, and theta + if row_start == None or row_end == row_start: + # We are processing an observation taken after the last calibration + date_start = date_end + v2start = v2end + v3start = v3end + _fraction = 0. + theta_start = theta_end + else: + _fraction = float((num_date - date_start)) / float((date_end - date_start)) + + v2ref = _fraction * (v2end - v2start) + v2start + v3ref = _fraction * (v3end - v3start) + v3start + theta = _fraction * (theta_end - theta_start) + theta_start + + return v2ref,v3ref,theta + +def readWCSCoeffs(header): + + #Read distortion coeffs from WCS header keywords and + #populate distortion coeffs arrays. + + # Read in order for polynomials + _xorder = header['a_order'] + _yorder = header['b_order'] + order = max(max(_xorder,_yorder),3) + + fx = np.zeros(shape=(order+1,order+1),dtype=np.float64) + fy = np.zeros(shape=(order+1,order+1),dtype=np.float64) + + # Read in CD matrix + _cd11 = header['cd1_1'] + _cd12 = header['cd1_2'] + _cd21 = header['cd2_1'] + _cd22 = header['cd2_2'] + _cdmat = np.array([[_cd11,_cd12],[_cd21,_cd22]]) + _theta = np.arctan2(-_cd12,_cd22) + _rotmat = np.array([[np.cos(_theta),np.sin(_theta)], + [-np.sin(_theta),np.cos(_theta)]]) + _rCD = np.dot(_rotmat,_cdmat) + _skew = np.arcsin(-_rCD[1][0] / _rCD[0][0]) + _scale = _rCD[0][0] * np.cos(_skew) * 3600. + _scale2 = _rCD[1][1] * 3600. + + # Set up refpix + refpix = {} + refpix['XREF'] = header['crpix1'] + refpix['YREF'] = header['crpix2'] + refpix['XSIZE'] = header['naxis1'] + refpix['YSIZE'] = header['naxis2'] + refpix['PSCALE'] = _scale + refpix['V2REF'] = 0. + refpix['V3REF'] = 0. + refpix['THETA'] = np.rad2deg(_theta) + refpix['XDELTA'] = 0.0 + refpix['YDELTA'] = 0.0 + refpix['DEFAULT_SCALE'] = yes + refpix['centered'] = yes + + + # Set up template for coeffs keyword names + cxstr = 'A_' + cystr = 'B_' + # Read coeffs into their own matrix + for i in range(_xorder+1): + for j in range(i+1): + xcname = cxstr+str(j)+'_'+str(i-j) + if xcname in header: + fx[i,j] = header[xcname] + + # Extract Y coeffs separately as a different order may + # have been used to fit it. + for i in range(_yorder+1): + for j in range(i+1): + ycname = cystr+str(j)+'_'+str(i-j) + if ycname in header: + fy[i,j] = header[ycname] + + # Now set the linear terms + fx[0][0] = 1.0 + fy[0][0] = 1.0 + + return fx,fy,refpix,order + + +def readTraugerTable(idcfile,wavelength): + + # Return a default geometry model if no coefficients filename + # is given. This model will not distort the data in any way. + if idcfile == None: + return fileutil.defaultModel() + + # Trauger coefficients only result in a cubic file... + order = 3 + numco = 10 + a_coeffs = [0] * numco + b_coeffs = [0] * numco + indx = _MgF2(wavelength) + + ifile = open(idcfile,'r') + # Search for the first line of the coefficients + _line = fileutil.rAsciiLine(ifile) + while _line[:7].lower() != 'trauger': + _line = fileutil.rAsciiLine(ifile) + # Read in each row of coefficients,split them into their values, + # and convert them into cubic coefficients based on + # index of refraction value for the given wavelength + # Build X coefficients from first 10 rows of Trauger coefficients + j = 0 + while j < 20: + _line = fileutil.rAsciiLine(ifile) + if _line == '': continue + _lc = _line.split() + if j < 10: + a_coeffs[j] = float(_lc[0])+float(_lc[1])*(indx-1.5)+float(_lc[2])*(indx-1.5)**2 + else: + b_coeffs[j-10] = float(_lc[0])+float(_lc[1])*(indx-1.5)+float(_lc[2])*(indx-1.5)**2 + j = j + 1 + + ifile.close() + del ifile + + # Now, convert the coefficients into a Numeric array + # with the right coefficients in the right place. + # Populate output values now... + fx = np.zeros(shape=(order+1,order+1),dtype=np.float64) + fy = np.zeros(shape=(order+1,order+1),dtype=np.float64) + # Assign the coefficients to their array positions + fx[0,0] = 0. + fx[1] = np.array([a_coeffs[2],a_coeffs[1],0.,0.],dtype=np.float64) + fx[2] = np.array([a_coeffs[5],a_coeffs[4],a_coeffs[3],0.],dtype=np.float64) + fx[3] = np.array([a_coeffs[9],a_coeffs[8],a_coeffs[7],a_coeffs[6]],dtype=np.float64) + fy[0,0] = 0. + fy[1] = np.array([b_coeffs[2],b_coeffs[1],0.,0.],dtype=np.float64) + fy[2] = np.array([b_coeffs[5],b_coeffs[4],b_coeffs[3],0.],dtype=np.float64) + fy[3] = np.array([b_coeffs[9],b_coeffs[8],b_coeffs[7],b_coeffs[6]],dtype=np.float64) + + # Used in Pattern.computeOffsets() + refpix = {} + refpix['XREF'] = None + refpix['YREF'] = None + refpix['V2REF'] = None + refpix['V3REF'] = None + refpix['XDELTA'] = 0. + refpix['YDELTA'] = 0. + refpix['PSCALE'] = None + refpix['DEFAULT_SCALE'] = no + refpix['centered'] = yes + + return fx,fy,refpix,order + + +def readCubicTable(idcfile): + # Assumption: this will only be used for cubic file... + order = 3 + # Also, this function does NOT perform any scaling on + # the coefficients, it simply passes along what is found + # in the file as is... + + # Return a default geometry model if no coefficients filename + # is given. This model will not distort the data in any way. + if idcfile == None: + return fileutil.defaultModel() + + ifile = open(idcfile,'r') + # Search for the first line of the coefficients + _line = fileutil.rAsciiLine(ifile) + + _found = no + while _found == no: + if _line[:7] in ['cubic','quartic','quintic'] or _line[:4] == 'poly': + found = yes + break + _line = fileutil.rAsciiLine(ifile) + + # Read in each row of coefficients, without line breaks or newlines + # split them into their values, and create a list for A coefficients + # and another list for the B coefficients + _line = fileutil.rAsciiLine(ifile) + a_coeffs = _line.split() + + x0 = float(a_coeffs[0]) + _line = fileutil.rAsciiLine(ifile) + a_coeffs[len(a_coeffs):] = _line.split() + # Scale coefficients for use within PyDrizzle + for i in range(len(a_coeffs)): + a_coeffs[i] = float(a_coeffs[i]) + + _line = fileutil.rAsciiLine(ifile) + b_coeffs = _line.split() + y0 = float(b_coeffs[0]) + _line = fileutil.rAsciiLine(ifile) + b_coeffs[len(b_coeffs):] = _line.split() + # Scale coefficients for use within PyDrizzle + for i in range(len(b_coeffs)): + b_coeffs[i] = float(b_coeffs[i]) + + ifile.close() + del ifile + # Now, convert the coefficients into a Numeric array + # with the right coefficients in the right place. + # Populate output values now... + fx = np.zeros(shape=(order+1,order+1),dtype=np.float64) + fy = np.zeros(shape=(order+1,order+1),dtype=np.float64) + # Assign the coefficients to their array positions + fx[0,0] = 0. + fx[1] = np.array([a_coeffs[2],a_coeffs[1],0.,0.],dtype=np.float64) + fx[2] = np.array([a_coeffs[5],a_coeffs[4],a_coeffs[3],0.],dtype=np.float64) + fx[3] = np.array([a_coeffs[9],a_coeffs[8],a_coeffs[7],a_coeffs[6]],dtype=np.float64) + fy[0,0] = 0. + fy[1] = np.array([b_coeffs[2],b_coeffs[1],0.,0.],dtype=np.float64) + fy[2] = np.array([b_coeffs[5],b_coeffs[4],b_coeffs[3],0.],dtype=np.float64) + fy[3] = np.array([b_coeffs[9],b_coeffs[8],b_coeffs[7],b_coeffs[6]],dtype=np.float64) + + # Used in Pattern.computeOffsets() + refpix = {} + refpix['XREF'] = None + refpix['YREF'] = None + refpix['V2REF'] = x0 + refpix['V3REF'] = y0 + refpix['XDELTA'] = 0. + refpix['YDELTA'] = 0. + refpix['PSCALE'] = None + refpix['DEFAULT_SCALE'] = no + refpix['centered'] = yes + + return fx,fy,refpix,order + +def factorial(n): + """ Compute a factorial for integer n. """ + m = 1 + for i in range(int(n)): + m = m * (i+1) + return m + +def combin(j,n): + """ Return the combinatorial factor for j in n.""" + return (factorial(j) / (factorial(n) * factorial( (j-n) ) ) ) + + +def defaultModel(): + """ This function returns a default, non-distorting model + that can be used with the data. + """ + order = 3 + + fx = np.zeros(shape=(order+1,order+1),dtype=np.float64) + fy = np.zeros(shape=(order+1,order+1),dtype=np.float64) + + fx[1,1] = 1. + fy[1,0] = 1. + + # Used in Pattern.computeOffsets() + refpix = {} + refpix['empty_model'] = yes + refpix['XREF'] = None + refpix['YREF'] = None + refpix['V2REF'] = 0. + refpix['XSIZE'] = 0. + refpix['YSIZE'] = 0. + refpix['V3REF'] = 0. + refpix['XDELTA'] = 0. + refpix['YDELTA'] = 0. + refpix['PSCALE'] = None + refpix['DEFAULT_SCALE'] = no + refpix['THETA'] = 0. + refpix['centered'] = yes + return fx,fy,refpix,order + +# Function to compute the index of refraction for MgF2 at +# the specified wavelength for use with Trauger coefficients +def _MgF2(lam): + _sig = pow((1.0e7/lam),2) + return np.sqrt(1.0 + 2.590355e10/(5.312993e10-_sig) + + 4.4543708e9/(11.17083e9-_sig) + 4.0838897e5/(1.766361e5-_sig)) + + +def convertDate(date): + """ Converts the DATE-OBS date string into an integer of the + number of seconds since 1970.0 using calendar.timegm(). + + INPUT: DATE-OBS in format of 'YYYY-MM-DD'. + OUTPUT: Date (integer) in seconds. + """ + + _dates = date.split('-') + _val = 0 + _date_tuple = (int(_dates[0]), int(_dates[1]), int(_dates[2]), 0, 0, 0, 0, 0, 0) + + return calendar.timegm(_date_tuple) |