summaryrefslogtreecommitdiff
path: root/stwcs/distortion/mutil.py
diff options
context:
space:
mode:
Diffstat (limited to 'stwcs/distortion/mutil.py')
-rw-r--r--stwcs/distortion/mutil.py703
1 files changed, 703 insertions, 0 deletions
diff --git a/stwcs/distortion/mutil.py b/stwcs/distortion/mutil.py
new file mode 100644
index 0000000..ed6a1ea
--- /dev/null
+++ b/stwcs/distortion/mutil.py
@@ -0,0 +1,703 @@
+from __future__ import division, print_function # confidence high
+
+from stsci.tools import fileutil
+import numpy as np
+import calendar
+
+# Set up IRAF-compatible Boolean values
+yes = True
+no = False
+
+# This function read the IDC table and generates the two matrices with
+# the geometric correction coefficients.
+#
+# INPUT: FITS object of open IDC table
+# OUTPUT: coefficient matrices for Fx and Fy
+#
+#### If 'tabname' == None: This should return a default, undistorted
+#### solution.
+#
+
+def readIDCtab (tabname, chip=1, date=None, direction='forward',
+ filter1=None,filter2=None, offtab=None):
+
+ """
+ Read IDCTAB, and optional OFFTAB if sepcified, and generate
+ the two matrices with the geometric correction coefficients.
+
+ If tabname == None, then return a default, undistorted solution.
+ If offtab is specified, dateobs also needs to be given.
+
+ """
+
+ # Return a default geometry model if no IDCTAB filename
+ # is given. This model will not distort the data in any way.
+ if tabname == None:
+ print('Warning: No IDCTAB specified! No distortion correction will be applied.')
+ return defaultModel()
+
+ # Implement default values for filters here to avoid the default
+ # being overwritten by values of None passed by user.
+ if filter1 == None or filter1.find('CLEAR') == 0 or filter1.strip() == '':
+ filter1 = 'CLEAR'
+ if filter2 == None or filter2.find('CLEAR') == 0 or filter2.strip() == '':
+ filter2 = 'CLEAR'
+
+ # Insure that tabname is full filename with fully expanded
+ # IRAF variables; i.e. 'jref$mc41442gj_idc.fits' should get
+ # expanded to '/data/cdbs7/jref/mc41442gj_idc.fits' before
+ # being used here.
+ # Open up IDC table now...
+ try:
+ ftab = fileutil.openImage(tabname)
+ except:
+ err_str = "------------------------------------------------------------------------ \n"
+ err_str += "WARNING: the IDCTAB geometric distortion file specified in the image \n"
+ err_str += "header was not found on disk. Please verify that your environment \n"
+ err_str += "variable ('jref'/'uref'/'oref'/'nref') has been correctly defined. If \n"
+ err_str += "you do not have the IDCTAB file, you may obtain the latest version \n"
+ err_str += "of it from the relevant instrument page on the STScI HST website: \n"
+ err_str += "http://www.stsci.edu/hst/ For WFPC2, STIS and NICMOS data, the \n"
+ err_str += "present run will continue using the old coefficients provided in \n"
+ err_str += "the Dither Package (ca. 1995-1998). \n"
+ err_str += "------------------------------------------------------------------------ \n"
+ raise IOError(err_str)
+
+ #First thing we need, is to read in the coefficients from the IDC
+ # table and populate the Fx and Fy matrices.
+
+ if 'DETECTOR' in ftab['PRIMARY'].header:
+ detector = ftab['PRIMARY'].header['DETECTOR']
+ else:
+ if 'CAMERA' in ftab['PRIMARY'].header:
+ detector = str(ftab['PRIMARY'].header['CAMERA'])
+ else:
+ detector = 1
+ # First, read in TDD coeffs if present
+ phdr = ftab['PRIMARY'].header
+ instrument = phdr['INSTRUME']
+ if instrument == 'ACS' and detector == 'WFC':
+ skew_coeffs = read_tdd_coeffs(phdr, chip=chip)
+ else:
+ skew_coeffs = None
+
+ # Set default filters for SBC
+ if detector == 'SBC':
+ if filter1 == 'CLEAR':
+ filter1 = 'F115LP'
+ filter2 = 'N/A'
+ if filter2 == 'CLEAR':
+ filter2 = 'N/A'
+
+ # Read FITS header to determine order of fit, i.e. k
+ norder = ftab['PRIMARY'].header['NORDER']
+ if norder < 3:
+ order = 3
+ else:
+ order = norder
+
+ fx = np.zeros(shape=(order+1,order+1),dtype=np.float64)
+ fy = np.zeros(shape=(order+1,order+1),dtype=np.float64)
+
+ #Determine row from which to get the coefficients.
+ # How many rows do we have in the table...
+ fshape = ftab[1].data.shape
+ colnames = ftab[1].data.names
+ row = -1
+
+ # Loop over all the rows looking for the one which corresponds
+ # to the value of CCDCHIP we are working on...
+ for i in range(fshape[0]):
+
+ try:
+ # Match FILTER combo to appropriate row,
+ #if there is a filter column in the IDCTAB...
+ if 'FILTER1' in colnames and 'FILTER2' in colnames:
+
+ filt1 = ftab[1].data.field('FILTER1')[i]
+ if filt1.find('CLEAR') > -1: filt1 = filt1[:5]
+
+ filt2 = ftab[1].data.field('FILTER2')[i]
+ if filt2.find('CLEAR') > -1: filt2 = filt2[:5]
+ else:
+ if 'OPT_ELEM' in colnames:
+ filt1 = ftab[1].data.field('OPT_ELEM')
+ if filt1.find('CLEAR') > -1: filt1 = filt1[:5]
+ else:
+ filt1 = filter1
+
+ if 'FILTER' in colnames:
+ _filt = ftab[1].data.field('FILTER')[i]
+ if _filt.find('CLEAR') > -1: _filt = _filt[:5]
+ if 'OPT_ELEM' in colnames:
+ filt2 = _filt
+ else:
+ filt1 = _filt
+ filt2 = 'CLEAR'
+ else:
+ filt2 = filter2
+ except:
+ # Otherwise assume all rows apply and compare to input filters...
+ filt1 = filter1
+ filt2 = filter2
+
+ if 'DETCHIP' in colnames:
+ detchip = ftab[1].data.field('DETCHIP')[i]
+ if not str(detchip).isdigit():
+ detchip = 1
+ else:
+ detchip = 1
+
+ if 'DIRECTION' in colnames:
+ direct = ftab[1].data.field('DIRECTION')[i].lower().strip()
+ else:
+ direct = 'forward'
+
+ if filt1 == filter1.strip() and filt2 == filter2.strip():
+ if direct == direction.strip():
+ if int(detchip) == int(chip) or int(detchip) == -999:
+ row = i
+ break
+
+ joinstr = ','
+ if 'CLEAR' in filter1:
+ f1str = ''
+ joinstr = ''
+ else:
+ f1str = filter1.strip()
+ if 'CLEAR' in filter2:
+ f2str = ''
+ joinstr = ''
+ else:
+ f2str = filter2.strip()
+ filtstr = (joinstr.join([f1str,f2str])).strip()
+ if row < 0:
+ err_str = '\nProblem finding row in IDCTAB! Could not find row matching:\n'
+ err_str += ' CHIP: '+str(detchip)+'\n'
+ err_str += ' FILTERS: '+filtstr+'\n'
+ ftab.close()
+ del ftab
+ raise LookupError(err_str)
+ else:
+ print('- IDCTAB: Distortion model from row',str(row+1),'for chip',detchip,':',filtstr)
+
+ # Read in V2REF and V3REF: this can either come from current table,
+ # or from an OFFTAB if time-dependent (i.e., for WFPC2)
+ theta = None
+ if 'V2REF' in colnames:
+ v2ref = ftab[1].data.field('V2REF')[row]
+ v3ref = ftab[1].data.field('V3REF')[row]
+ else:
+ # Read V2REF/V3REF from offset table (OFFTAB)
+ if offtab:
+ v2ref,v3ref,theta = readOfftab(offtab, date, chip=detchip)
+ else:
+ v2ref = 0.0
+ v3ref = 0.0
+
+ if theta == None:
+ if 'THETA' in colnames:
+ theta = ftab[1].data.field('THETA')[row]
+ else:
+ theta = 0.0
+
+ refpix = {}
+ refpix['XREF'] = ftab[1].data.field('XREF')[row]
+ refpix['YREF'] = ftab[1].data.field('YREF')[row]
+ refpix['XSIZE'] = ftab[1].data.field('XSIZE')[row]
+ refpix['YSIZE'] = ftab[1].data.field('YSIZE')[row]
+ refpix['PSCALE'] = round(ftab[1].data.field('SCALE')[row],8)
+ refpix['V2REF'] = v2ref
+ refpix['V3REF'] = v3ref
+ refpix['THETA'] = theta
+ refpix['XDELTA'] = 0.0
+ refpix['YDELTA'] = 0.0
+ refpix['DEFAULT_SCALE'] = yes
+ refpix['centered'] = no
+ refpix['skew_coeffs'] = skew_coeffs
+ # Now that we know which row to look at, read coefficients into the
+ # numeric arrays we have set up...
+ # Setup which column name convention the IDCTAB follows
+ # either: A,B or CX,CY
+ if 'CX10' in ftab[1].data.names:
+ cxstr = 'CX'
+ cystr = 'CY'
+ else:
+ cxstr = 'A'
+ cystr = 'B'
+
+ for i in range(norder+1):
+ if i > 0:
+ for j in range(i+1):
+ xcname = cxstr+str(i)+str(j)
+ ycname = cystr+str(i)+str(j)
+ fx[i,j] = ftab[1].data.field(xcname)[row]
+ fy[i,j] = ftab[1].data.field(ycname)[row]
+
+ ftab.close()
+ del ftab
+
+ # If CX11 is 1.0 and not equal to the PSCALE, then the
+ # coeffs need to be scaled
+
+ if fx[1,1] == 1.0 and abs(fx[1,1]) != refpix['PSCALE']:
+ fx *= refpix['PSCALE']
+ fy *= refpix['PSCALE']
+
+ # Return arrays and polynomial order read in from table.
+ # NOTE: XREF and YREF are stored in Fx,Fy arrays respectively.
+ return fx,fy,refpix,order
+#
+#
+# Time-dependent skew correction coefficients (only ACS/WFC)
+#
+#
+def read_tdd_coeffs(phdr, chip=1):
+ ''' Read in the TDD related keywords from the PRIMARY header of the IDCTAB
+ '''
+ # Insure we have an integer form of chip
+ ic = int(chip)
+
+ skew_coeffs = {}
+ skew_coeffs['TDDORDER'] = 0
+ skew_coeffs['TDD_DATE'] = ""
+ skew_coeffs['TDD_A'] = None
+ skew_coeffs['TDD_B'] = None
+ skew_coeffs['TDD_CY_BETA'] = None
+ skew_coeffs['TDD_CY_ALPHA'] = None
+ skew_coeffs['TDD_CX_BETA'] = None
+ skew_coeffs['TDD_CX_ALPHA'] = None
+
+ # Skew-based TDD coefficients
+ skew_terms = ['TDD_CTB','TDD_CTA','TDD_CYA','TDD_CYB','TDD_CXA','TDD_CXB']
+ for s in skew_terms:
+ skew_coeffs[s] = None
+
+ if "TDD_CTB1" in phdr:
+ # We have the 2015-calibrated TDD correction to apply
+ # This correction is based on correcting the skew in the linear terms
+ # not just set polynomial terms
+ print("Using 2015-calibrated VAFACTOR-corrected TDD correction...")
+ skew_coeffs['TDD_DATE'] = phdr['TDD_DATE']
+ for s in skew_terms:
+ skew_coeffs[s] = phdr.get('{0}{1}'.format(s,ic),None)
+
+ elif "TDD_CYB1" in phdr:
+ # We have 2014-calibrated TDD correction to apply, not J.A.-derived values
+ print("Using 2014-calibrated TDD correction...")
+ skew_coeffs['TDD_DATE'] = phdr['TDD_DATE']
+ # Read coefficients for TDD Y coefficient
+ cyb_kw = 'TDD_CYB{0}'.format(int(chip))
+ skew_coeffs['TDD_CY_BETA'] = phdr.get(cyb_kw,None)
+ cya_kw = 'TDD_CYA{0}'.format(int(chip))
+ tdd_cya = phdr.get(cya_kw,None)
+ if tdd_cya == 0 or tdd_cya == 'N/A': tdd_cya = None
+ skew_coeffs['TDD_CY_ALPHA'] = tdd_cya
+
+ # Read coefficients for TDD X coefficient
+ cxb_kw = 'TDD_CXB{0}'.format(int(chip))
+ skew_coeffs['TDD_CX_BETA'] = phdr.get(cxb_kw,None)
+ cxa_kw = 'TDD_CXA{0}'.format(int(chip))
+ tdd_cxa = phdr.get(cxa_kw,None)
+ if tdd_cxa == 0 or tdd_cxa == 'N/A': tdd_cxa = None
+ skew_coeffs['TDD_CX_ALPHA'] = tdd_cxa
+
+ else:
+ if "TDDORDER" in phdr:
+ n = int(phdr["TDDORDER"])
+ else:
+ print('TDDORDER kw not present, using default TDD correction')
+ return None
+
+ a = np.zeros((n+1,), np.float64)
+ b = np.zeros((n+1,), np.float64)
+ for i in range(n+1):
+ a[i] = phdr.get(("TDD_A%d" % i), 0.0)
+ b[i] = phdr.get(("TDD_B%d" % i), 0.0)
+ if (a==0).all() and (b==0).all():
+ print('Warning: TDD_A and TDD_B coeffiecients have values of 0, \n \
+ but TDDORDER is %d.' % TDDORDER)
+
+ skew_coeffs['TDDORDER'] = n
+ skew_coeffs['TDD_DATE'] = phdr['TDD_DATE']
+ skew_coeffs['TDD_A'] = a
+ skew_coeffs['TDD_B'] = b
+
+ return skew_coeffs
+
+def readOfftab(offtab, date, chip=None):
+
+
+#Read V2REF,V3REF from a specified offset table (OFFTAB).
+# Return a default geometry model if no IDCTAB filenam e
+# is given. This model will not distort the data in any way.
+
+ if offtab == None:
+ return 0.,0.
+
+ # Provide a default value for chip
+ if chip:
+ detchip = chip
+ else:
+ detchip = 1
+
+ # Open up IDC table now...
+ try:
+ ftab = fileutil.openImage(offtab)
+ except:
+ raise IOError("Offset table '%s' not valid as specified!" % offtab)
+
+ #Determine row from which to get the coefficients.
+ # How many rows do we have in the table...
+ fshape = ftab[1].data.shape
+ colnames = ftab[1].data.names
+ row = -1
+
+ row_start = None
+ row_end = None
+
+ v2end = None
+ v3end = None
+ date_end = None
+ theta_end = None
+
+ num_date = convertDate(date)
+ # Loop over all the rows looking for the one which corresponds
+ # to the value of CCDCHIP we are working on...
+ for ri in range(fshape[0]):
+ i = fshape[0] - ri - 1
+ if 'DETCHIP' in colnames:
+ detchip = ftab[1].data.field('DETCHIP')[i]
+ else:
+ detchip = 1
+
+ obsdate = convertDate(ftab[1].data.field('OBSDATE')[i])
+
+ # If the row is appropriate for the chip...
+ # Interpolate between dates
+ if int(detchip) == int(chip) or int(detchip) == -999:
+ if num_date <= obsdate:
+ date_end = obsdate
+ v2end = ftab[1].data.field('V2REF')[i]
+ v3end = ftab[1].data.field('V3REF')[i]
+ theta_end = ftab[1].data.field('THETA')[i]
+ row_end = i
+ continue
+
+ if row_end == None and (num_date > obsdate):
+ date_end = obsdate
+ v2end = ftab[1].data.field('V2REF')[i]
+ v3end = ftab[1].data.field('V3REF')[i]
+ theta_end = ftab[1].data.field('THETA')[i]
+ row_end = i
+ continue
+
+ if num_date > obsdate:
+ date_start = obsdate
+ v2start = ftab[1].data.field('V2REF')[i]
+ v3start = ftab[1].data.field('V3REF')[i]
+ theta_start = ftab[1].data.field('THETA')[i]
+ row_start = i
+ break
+
+ ftab.close()
+ del ftab
+
+ if row_start == None and row_end == None:
+ print('Row corresponding to DETCHIP of ',detchip,' was not found!')
+ raise LookupError
+ elif row_start == None:
+ print('- OFFTAB: Offset defined by row',str(row_end+1))
+ else:
+ print('- OFFTAB: Offset interpolated from rows',str(row_start+1),'and',str(row_end+1))
+
+ # Now, do the interpolation for v2ref, v3ref, and theta
+ if row_start == None or row_end == row_start:
+ # We are processing an observation taken after the last calibration
+ date_start = date_end
+ v2start = v2end
+ v3start = v3end
+ _fraction = 0.
+ theta_start = theta_end
+ else:
+ _fraction = float((num_date - date_start)) / float((date_end - date_start))
+
+ v2ref = _fraction * (v2end - v2start) + v2start
+ v3ref = _fraction * (v3end - v3start) + v3start
+ theta = _fraction * (theta_end - theta_start) + theta_start
+
+ return v2ref,v3ref,theta
+
+def readWCSCoeffs(header):
+
+ #Read distortion coeffs from WCS header keywords and
+ #populate distortion coeffs arrays.
+
+ # Read in order for polynomials
+ _xorder = header['a_order']
+ _yorder = header['b_order']
+ order = max(max(_xorder,_yorder),3)
+
+ fx = np.zeros(shape=(order+1,order+1),dtype=np.float64)
+ fy = np.zeros(shape=(order+1,order+1),dtype=np.float64)
+
+ # Read in CD matrix
+ _cd11 = header['cd1_1']
+ _cd12 = header['cd1_2']
+ _cd21 = header['cd2_1']
+ _cd22 = header['cd2_2']
+ _cdmat = np.array([[_cd11,_cd12],[_cd21,_cd22]])
+ _theta = np.arctan2(-_cd12,_cd22)
+ _rotmat = np.array([[np.cos(_theta),np.sin(_theta)],
+ [-np.sin(_theta),np.cos(_theta)]])
+ _rCD = np.dot(_rotmat,_cdmat)
+ _skew = np.arcsin(-_rCD[1][0] / _rCD[0][0])
+ _scale = _rCD[0][0] * np.cos(_skew) * 3600.
+ _scale2 = _rCD[1][1] * 3600.
+
+ # Set up refpix
+ refpix = {}
+ refpix['XREF'] = header['crpix1']
+ refpix['YREF'] = header['crpix2']
+ refpix['XSIZE'] = header['naxis1']
+ refpix['YSIZE'] = header['naxis2']
+ refpix['PSCALE'] = _scale
+ refpix['V2REF'] = 0.
+ refpix['V3REF'] = 0.
+ refpix['THETA'] = np.rad2deg(_theta)
+ refpix['XDELTA'] = 0.0
+ refpix['YDELTA'] = 0.0
+ refpix['DEFAULT_SCALE'] = yes
+ refpix['centered'] = yes
+
+
+ # Set up template for coeffs keyword names
+ cxstr = 'A_'
+ cystr = 'B_'
+ # Read coeffs into their own matrix
+ for i in range(_xorder+1):
+ for j in range(i+1):
+ xcname = cxstr+str(j)+'_'+str(i-j)
+ if xcname in header:
+ fx[i,j] = header[xcname]
+
+ # Extract Y coeffs separately as a different order may
+ # have been used to fit it.
+ for i in range(_yorder+1):
+ for j in range(i+1):
+ ycname = cystr+str(j)+'_'+str(i-j)
+ if ycname in header:
+ fy[i,j] = header[ycname]
+
+ # Now set the linear terms
+ fx[0][0] = 1.0
+ fy[0][0] = 1.0
+
+ return fx,fy,refpix,order
+
+
+def readTraugerTable(idcfile,wavelength):
+
+ # Return a default geometry model if no coefficients filename
+ # is given. This model will not distort the data in any way.
+ if idcfile == None:
+ return fileutil.defaultModel()
+
+ # Trauger coefficients only result in a cubic file...
+ order = 3
+ numco = 10
+ a_coeffs = [0] * numco
+ b_coeffs = [0] * numco
+ indx = _MgF2(wavelength)
+
+ ifile = open(idcfile,'r')
+ # Search for the first line of the coefficients
+ _line = fileutil.rAsciiLine(ifile)
+ while _line[:7].lower() != 'trauger':
+ _line = fileutil.rAsciiLine(ifile)
+ # Read in each row of coefficients,split them into their values,
+ # and convert them into cubic coefficients based on
+ # index of refraction value for the given wavelength
+ # Build X coefficients from first 10 rows of Trauger coefficients
+ j = 0
+ while j < 20:
+ _line = fileutil.rAsciiLine(ifile)
+ if _line == '': continue
+ _lc = _line.split()
+ if j < 10:
+ a_coeffs[j] = float(_lc[0])+float(_lc[1])*(indx-1.5)+float(_lc[2])*(indx-1.5)**2
+ else:
+ b_coeffs[j-10] = float(_lc[0])+float(_lc[1])*(indx-1.5)+float(_lc[2])*(indx-1.5)**2
+ j = j + 1
+
+ ifile.close()
+ del ifile
+
+ # Now, convert the coefficients into a Numeric array
+ # with the right coefficients in the right place.
+ # Populate output values now...
+ fx = np.zeros(shape=(order+1,order+1),dtype=np.float64)
+ fy = np.zeros(shape=(order+1,order+1),dtype=np.float64)
+ # Assign the coefficients to their array positions
+ fx[0,0] = 0.
+ fx[1] = np.array([a_coeffs[2],a_coeffs[1],0.,0.],dtype=np.float64)
+ fx[2] = np.array([a_coeffs[5],a_coeffs[4],a_coeffs[3],0.],dtype=np.float64)
+ fx[3] = np.array([a_coeffs[9],a_coeffs[8],a_coeffs[7],a_coeffs[6]],dtype=np.float64)
+ fy[0,0] = 0.
+ fy[1] = np.array([b_coeffs[2],b_coeffs[1],0.,0.],dtype=np.float64)
+ fy[2] = np.array([b_coeffs[5],b_coeffs[4],b_coeffs[3],0.],dtype=np.float64)
+ fy[3] = np.array([b_coeffs[9],b_coeffs[8],b_coeffs[7],b_coeffs[6]],dtype=np.float64)
+
+ # Used in Pattern.computeOffsets()
+ refpix = {}
+ refpix['XREF'] = None
+ refpix['YREF'] = None
+ refpix['V2REF'] = None
+ refpix['V3REF'] = None
+ refpix['XDELTA'] = 0.
+ refpix['YDELTA'] = 0.
+ refpix['PSCALE'] = None
+ refpix['DEFAULT_SCALE'] = no
+ refpix['centered'] = yes
+
+ return fx,fy,refpix,order
+
+
+def readCubicTable(idcfile):
+ # Assumption: this will only be used for cubic file...
+ order = 3
+ # Also, this function does NOT perform any scaling on
+ # the coefficients, it simply passes along what is found
+ # in the file as is...
+
+ # Return a default geometry model if no coefficients filename
+ # is given. This model will not distort the data in any way.
+ if idcfile == None:
+ return fileutil.defaultModel()
+
+ ifile = open(idcfile,'r')
+ # Search for the first line of the coefficients
+ _line = fileutil.rAsciiLine(ifile)
+
+ _found = no
+ while _found == no:
+ if _line[:7] in ['cubic','quartic','quintic'] or _line[:4] == 'poly':
+ found = yes
+ break
+ _line = fileutil.rAsciiLine(ifile)
+
+ # Read in each row of coefficients, without line breaks or newlines
+ # split them into their values, and create a list for A coefficients
+ # and another list for the B coefficients
+ _line = fileutil.rAsciiLine(ifile)
+ a_coeffs = _line.split()
+
+ x0 = float(a_coeffs[0])
+ _line = fileutil.rAsciiLine(ifile)
+ a_coeffs[len(a_coeffs):] = _line.split()
+ # Scale coefficients for use within PyDrizzle
+ for i in range(len(a_coeffs)):
+ a_coeffs[i] = float(a_coeffs[i])
+
+ _line = fileutil.rAsciiLine(ifile)
+ b_coeffs = _line.split()
+ y0 = float(b_coeffs[0])
+ _line = fileutil.rAsciiLine(ifile)
+ b_coeffs[len(b_coeffs):] = _line.split()
+ # Scale coefficients for use within PyDrizzle
+ for i in range(len(b_coeffs)):
+ b_coeffs[i] = float(b_coeffs[i])
+
+ ifile.close()
+ del ifile
+ # Now, convert the coefficients into a Numeric array
+ # with the right coefficients in the right place.
+ # Populate output values now...
+ fx = np.zeros(shape=(order+1,order+1),dtype=np.float64)
+ fy = np.zeros(shape=(order+1,order+1),dtype=np.float64)
+ # Assign the coefficients to their array positions
+ fx[0,0] = 0.
+ fx[1] = np.array([a_coeffs[2],a_coeffs[1],0.,0.],dtype=np.float64)
+ fx[2] = np.array([a_coeffs[5],a_coeffs[4],a_coeffs[3],0.],dtype=np.float64)
+ fx[3] = np.array([a_coeffs[9],a_coeffs[8],a_coeffs[7],a_coeffs[6]],dtype=np.float64)
+ fy[0,0] = 0.
+ fy[1] = np.array([b_coeffs[2],b_coeffs[1],0.,0.],dtype=np.float64)
+ fy[2] = np.array([b_coeffs[5],b_coeffs[4],b_coeffs[3],0.],dtype=np.float64)
+ fy[3] = np.array([b_coeffs[9],b_coeffs[8],b_coeffs[7],b_coeffs[6]],dtype=np.float64)
+
+ # Used in Pattern.computeOffsets()
+ refpix = {}
+ refpix['XREF'] = None
+ refpix['YREF'] = None
+ refpix['V2REF'] = x0
+ refpix['V3REF'] = y0
+ refpix['XDELTA'] = 0.
+ refpix['YDELTA'] = 0.
+ refpix['PSCALE'] = None
+ refpix['DEFAULT_SCALE'] = no
+ refpix['centered'] = yes
+
+ return fx,fy,refpix,order
+
+def factorial(n):
+ """ Compute a factorial for integer n. """
+ m = 1
+ for i in range(int(n)):
+ m = m * (i+1)
+ return m
+
+def combin(j,n):
+ """ Return the combinatorial factor for j in n."""
+ return (factorial(j) / (factorial(n) * factorial( (j-n) ) ) )
+
+
+def defaultModel():
+ """ This function returns a default, non-distorting model
+ that can be used with the data.
+ """
+ order = 3
+
+ fx = np.zeros(shape=(order+1,order+1),dtype=np.float64)
+ fy = np.zeros(shape=(order+1,order+1),dtype=np.float64)
+
+ fx[1,1] = 1.
+ fy[1,0] = 1.
+
+ # Used in Pattern.computeOffsets()
+ refpix = {}
+ refpix['empty_model'] = yes
+ refpix['XREF'] = None
+ refpix['YREF'] = None
+ refpix['V2REF'] = 0.
+ refpix['XSIZE'] = 0.
+ refpix['YSIZE'] = 0.
+ refpix['V3REF'] = 0.
+ refpix['XDELTA'] = 0.
+ refpix['YDELTA'] = 0.
+ refpix['PSCALE'] = None
+ refpix['DEFAULT_SCALE'] = no
+ refpix['THETA'] = 0.
+ refpix['centered'] = yes
+ return fx,fy,refpix,order
+
+# Function to compute the index of refraction for MgF2 at
+# the specified wavelength for use with Trauger coefficients
+def _MgF2(lam):
+ _sig = pow((1.0e7/lam),2)
+ return np.sqrt(1.0 + 2.590355e10/(5.312993e10-_sig) +
+ 4.4543708e9/(11.17083e9-_sig) + 4.0838897e5/(1.766361e5-_sig))
+
+
+def convertDate(date):
+ """ Converts the DATE-OBS date string into an integer of the
+ number of seconds since 1970.0 using calendar.timegm().
+
+ INPUT: DATE-OBS in format of 'YYYY-MM-DD'.
+ OUTPUT: Date (integer) in seconds.
+ """
+
+ _dates = date.split('-')
+ _val = 0
+ _date_tuple = (int(_dates[0]), int(_dates[1]), int(_dates[2]), 0, 0, 0, 0, 0, 0)
+
+ return calendar.timegm(_date_tuple)