diff options
author | Jef <jef@targetspot.com> | 2024-09-24 08:54:57 -0400 |
---|---|---|
committer | Jef <jef@targetspot.com> | 2024-09-24 08:54:57 -0400 |
commit | 20d28e80a5c861a9d5f449ea911ab75b4f37ad0d (patch) | |
tree | 12f17f78986871dd2cfb0a56e5e93b545c1ae0d0 /Src/Plugins/Visualization/vis_milk2/fft.cpp | |
parent | 537bcbc86291b32fc04ae4133ce4d7cac8ebe9a7 (diff) | |
download | winamp-20d28e80a5c861a9d5f449ea911ab75b4f37ad0d.tar.gz |
Initial community commit
Diffstat (limited to 'Src/Plugins/Visualization/vis_milk2/fft.cpp')
-rw-r--r-- | Src/Plugins/Visualization/vis_milk2/fft.cpp | 320 |
1 files changed, 320 insertions, 0 deletions
diff --git a/Src/Plugins/Visualization/vis_milk2/fft.cpp b/Src/Plugins/Visualization/vis_milk2/fft.cpp new file mode 100644 index 00000000..7c0a5129 --- /dev/null +++ b/Src/Plugins/Visualization/vis_milk2/fft.cpp @@ -0,0 +1,320 @@ +/* + LICENSE + ------- +Copyright 2005-2013 Nullsoft, Inc. +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + * Neither the name of Nullsoft nor the names of its contributors may be used to + endorse or promote products derived from this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR +IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND +FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR +CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER +IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT +OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + +#include <math.h> +#include <memory.h> +#include "fft.h" + +#define PI 3.141592653589793238462643383279502884197169399f + +#define SafeDeleteArray(x) { if (x) { delete [] x; x = 0; } } + +/*****************************************************************************/ + +FFT::FFT() +{ + NFREQ = 0; + + envelope = 0; + equalize = 0; + bitrevtable = 0; + cossintable = 0; + temp1 = 0; + temp2 = 0; +} + +/*****************************************************************************/ + +FFT::~FFT() +{ + CleanUp(); +} + +/*****************************************************************************/ + +void FFT::Init(int samples_in, int samples_out, int bEqualize, float envelope_power) +{ + // samples_in: # of waveform samples you'll feed into the FFT + // samples_out: # of frequency samples you want out; MUST BE A POWER OF 2. + // bEqualize: set to 1 if you want the magnitude of the basses and trebles + // to be roughly equalized; 0 to leave them untouched. + // envelope_power: set to -1 to disable the envelope; otherwise, specify + // the envelope power you want here. See InitEnvelopeTable for more info. + + CleanUp(); + + m_samples_in = samples_in; + NFREQ = samples_out*2; + + InitBitRevTable(); + InitCosSinTable(); + if (envelope_power > 0) + InitEnvelopeTable(envelope_power); + if (bEqualize) + InitEqualizeTable(); + temp1 = new float[NFREQ]; + temp2 = new float[NFREQ]; +} + +/*****************************************************************************/ + +void FFT::CleanUp() +{ + SafeDeleteArray(envelope); + SafeDeleteArray(equalize); + SafeDeleteArray(bitrevtable); + SafeDeleteArray(cossintable); + SafeDeleteArray(temp1); + SafeDeleteArray(temp2); +} + +/*****************************************************************************/ + +void FFT::InitEqualizeTable() +{ + int i; + float scaling = -0.02f; + float inv_half_nfreq = 1.0f/(float)(NFREQ/2); + + equalize = new float[NFREQ/2]; + + for (i=0; i<NFREQ/2; i++) + equalize[i] = scaling * logf( (float)(NFREQ/2-i)*inv_half_nfreq ); +} + +/*****************************************************************************/ + +void FFT::InitEnvelopeTable(float power) +{ + // this precomputation is for multiplying the waveform sample + // by a bell-curve-shaped envelope, so we don't see the ugly + // frequency response (oscillations) of a square filter. + + // a power of 1.0 will compute the FFT with exactly one convolution. + // a power of 2.0 is like doing it twice; the resulting frequency + // output will be smoothed out and the peaks will be "fatter". + // a power of 0.5 is closer to not using an envelope, and you start + // to get the frequency response of the square filter as 'power' + // approaches zero; the peaks get tighter and more precise, but + // you also see small oscillations around their bases. + + int i; + float mult = 1.0f/(float)m_samples_in * 6.2831853f; + + envelope = new float[m_samples_in]; + + if (power==1.0f) + for (i=0; i<m_samples_in; i++) + envelope[i] = 0.5f + 0.5f*sinf(i*mult - 1.5707963268f); + else + for (i=0; i<m_samples_in; i++) + envelope[i] = powf(0.5f + 0.5f*sinf(i*mult - 1.5707963268f), power); +} + +/*****************************************************************************/ + +void FFT::InitBitRevTable() +{ + int i,j,m,temp; + bitrevtable = new int[NFREQ]; + + for (i=0; i<NFREQ; i++) + bitrevtable[i] = i; + + for (i=0,j=0; i < NFREQ; i++) + { + if (j > i) + { + temp = bitrevtable[i]; + bitrevtable[i] = bitrevtable[j]; + bitrevtable[j] = temp; + } + + m = NFREQ >> 1; + + while (m >= 1 && j >= m) + { + j -= m; + m >>= 1; + } + + j += m; + } +} + +/*****************************************************************************/ + +void FFT::InitCosSinTable() +{ + + int i,dftsize,tabsize; + float theta; + + dftsize = 2; + tabsize = 0; + while (dftsize <= NFREQ) + { + tabsize++; + dftsize <<= 1; + } + + cossintable = new float[tabsize][2]; + + dftsize = 2; + i = 0; + while (dftsize <= NFREQ) + { + theta = (float)(-2.0f*PI/(float)dftsize); + cossintable[i][0] = (float)cosf(theta); + cossintable[i][1] = (float)sinf(theta); + i++; + dftsize <<= 1; + } +} + +/*****************************************************************************/ + +void FFT::time_to_frequency_domain(float *in_wavedata, float *out_spectraldata) +{ + // Converts time-domain samples from in_wavedata[] + // into frequency-domain samples in out_spectraldata[]. + // The array lengths are the two parameters to Init(). + + // The last sample of the output data will represent the frequency + // that is 1/4th of the input sampling rate. For example, + // if the input wave data is sampled at 44,100 Hz, then the last + // sample of the spectral data output will represent the frequency + // 11,025 Hz. The first sample will be 0 Hz; the frequencies of + // the rest of the samples vary linearly in between. + // Note that since human hearing is limited to the range 200 - 20,000 + // Hz. 200 is a low bass hum; 20,000 is an ear-piercing high shriek. + // Each time the frequency doubles, that sounds like going up an octave. + // That means that the difference between 200 and 300 Hz is FAR more + // than the difference between 5000 and 5100, for example! + // So, when trying to analyze bass, you'll want to look at (probably) + // the 200-800 Hz range; whereas for treble, you'll want the 1,400 - + // 11,025 Hz range. + // If you want to get 3 bands, try it this way: + // a) 11,025 / 200 = 55.125 + // b) to get the number of octaves between 200 and 11,025 Hz, solve for n: + // 2^n = 55.125 + // n = log 55.125 / log 2 + // n = 5.785 + // c) so each band should represent 5.785/3 = 1.928 octaves; the ranges are: + // 1) 200 - 200*2^1.928 or 200 - 761 Hz + // 2) 200*2^1.928 - 200*2^(1.928*2) or 761 - 2897 Hz + // 3) 200*2^(1.928*2) - 200*2^(1.928*3) or 2897 - 11025 Hz + + // A simple sine-wave-based envelope is convolved with the waveform + // data before doing the FFT, to emeliorate the bad frequency response + // of a square (i.e. nonexistent) filter. + + // You might want to slightly damp (blur) the input if your signal isn't + // of a very high quality, to reduce high-frequency noise that would + // otherwise show up in the output. + + int j, m, i, dftsize, hdftsize, t; + float wr, wi, wpi, wpr, wtemp, tempr, tempi; + + if (!bitrevtable) return; + //if (!envelope) return; + //if (!equalize) return; + if (!temp1) return; + if (!temp2) return; + if (!cossintable) return; + + // 1. set up input to the fft + if (envelope) + { + for (i=0; i<NFREQ; i++) + { + int idx = bitrevtable[i]; + if (idx < m_samples_in) + temp1[i] = in_wavedata[idx] * envelope[idx]; + else + temp1[i] = 0; + } + } + else + { + for (i=0; i<NFREQ; i++) + { + int idx = bitrevtable[i]; + if (idx < m_samples_in) + temp1[i] = in_wavedata[idx];// * envelope[idx]; + else + temp1[i] = 0; + } + } + memset(temp2, 0, sizeof(float)*NFREQ); + + // 2. perform FFT + float *real = temp1; + float *imag = temp2; + dftsize = 2; + t = 0; + while (dftsize <= NFREQ) + { + wpr = cossintable[t][0]; + wpi = cossintable[t][1]; + wr = 1.0f; + wi = 0.0f; + hdftsize = dftsize >> 1; + + for (m = 0; m < hdftsize; m+=1) + { + for (i = m; i < NFREQ; i+=dftsize) + { + j = i + hdftsize; + tempr = wr*real[j] - wi*imag[j]; + tempi = wr*imag[j] + wi*real[j]; + real[j] = real[i] - tempr; + imag[j] = imag[i] - tempi; + real[i] += tempr; + imag[i] += tempi; + } + + wr = (wtemp=wr)*wpr - wi*wpi; + wi = wi*wpr + wtemp*wpi; + } + + dftsize <<= 1; + t++; + } + + // 3. take the magnitude & equalize it (on a log10 scale) for output + if (equalize) + for (i=0; i<NFREQ/2; i++) + out_spectraldata[i] = equalize[i] * sqrtf(temp1[i]*temp1[i] + temp2[i]*temp2[i]); + else + for (i=0; i<NFREQ/2; i++) + out_spectraldata[i] = sqrtf(temp1[i]*temp1[i] + temp2[i]*temp2[i]); +} + +/*****************************************************************************/
\ No newline at end of file |