aboutsummaryrefslogtreecommitdiff
path: root/Src/Plugins/Visualization/vis_milk2/fft.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Src/Plugins/Visualization/vis_milk2/fft.cpp')
-rw-r--r--Src/Plugins/Visualization/vis_milk2/fft.cpp320
1 files changed, 320 insertions, 0 deletions
diff --git a/Src/Plugins/Visualization/vis_milk2/fft.cpp b/Src/Plugins/Visualization/vis_milk2/fft.cpp
new file mode 100644
index 00000000..7c0a5129
--- /dev/null
+++ b/Src/Plugins/Visualization/vis_milk2/fft.cpp
@@ -0,0 +1,320 @@
+/*
+ LICENSE
+ -------
+Copyright 2005-2013 Nullsoft, Inc.
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+
+ * Neither the name of Nullsoft nor the names of its contributors may be used to
+ endorse or promote products derived from this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
+IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
+FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
+IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
+OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#include <math.h>
+#include <memory.h>
+#include "fft.h"
+
+#define PI 3.141592653589793238462643383279502884197169399f
+
+#define SafeDeleteArray(x) { if (x) { delete [] x; x = 0; } }
+
+/*****************************************************************************/
+
+FFT::FFT()
+{
+ NFREQ = 0;
+
+ envelope = 0;
+ equalize = 0;
+ bitrevtable = 0;
+ cossintable = 0;
+ temp1 = 0;
+ temp2 = 0;
+}
+
+/*****************************************************************************/
+
+FFT::~FFT()
+{
+ CleanUp();
+}
+
+/*****************************************************************************/
+
+void FFT::Init(int samples_in, int samples_out, int bEqualize, float envelope_power)
+{
+ // samples_in: # of waveform samples you'll feed into the FFT
+ // samples_out: # of frequency samples you want out; MUST BE A POWER OF 2.
+ // bEqualize: set to 1 if you want the magnitude of the basses and trebles
+ // to be roughly equalized; 0 to leave them untouched.
+ // envelope_power: set to -1 to disable the envelope; otherwise, specify
+ // the envelope power you want here. See InitEnvelopeTable for more info.
+
+ CleanUp();
+
+ m_samples_in = samples_in;
+ NFREQ = samples_out*2;
+
+ InitBitRevTable();
+ InitCosSinTable();
+ if (envelope_power > 0)
+ InitEnvelopeTable(envelope_power);
+ if (bEqualize)
+ InitEqualizeTable();
+ temp1 = new float[NFREQ];
+ temp2 = new float[NFREQ];
+}
+
+/*****************************************************************************/
+
+void FFT::CleanUp()
+{
+ SafeDeleteArray(envelope);
+ SafeDeleteArray(equalize);
+ SafeDeleteArray(bitrevtable);
+ SafeDeleteArray(cossintable);
+ SafeDeleteArray(temp1);
+ SafeDeleteArray(temp2);
+}
+
+/*****************************************************************************/
+
+void FFT::InitEqualizeTable()
+{
+ int i;
+ float scaling = -0.02f;
+ float inv_half_nfreq = 1.0f/(float)(NFREQ/2);
+
+ equalize = new float[NFREQ/2];
+
+ for (i=0; i<NFREQ/2; i++)
+ equalize[i] = scaling * logf( (float)(NFREQ/2-i)*inv_half_nfreq );
+}
+
+/*****************************************************************************/
+
+void FFT::InitEnvelopeTable(float power)
+{
+ // this precomputation is for multiplying the waveform sample
+ // by a bell-curve-shaped envelope, so we don't see the ugly
+ // frequency response (oscillations) of a square filter.
+
+ // a power of 1.0 will compute the FFT with exactly one convolution.
+ // a power of 2.0 is like doing it twice; the resulting frequency
+ // output will be smoothed out and the peaks will be "fatter".
+ // a power of 0.5 is closer to not using an envelope, and you start
+ // to get the frequency response of the square filter as 'power'
+ // approaches zero; the peaks get tighter and more precise, but
+ // you also see small oscillations around their bases.
+
+ int i;
+ float mult = 1.0f/(float)m_samples_in * 6.2831853f;
+
+ envelope = new float[m_samples_in];
+
+ if (power==1.0f)
+ for (i=0; i<m_samples_in; i++)
+ envelope[i] = 0.5f + 0.5f*sinf(i*mult - 1.5707963268f);
+ else
+ for (i=0; i<m_samples_in; i++)
+ envelope[i] = powf(0.5f + 0.5f*sinf(i*mult - 1.5707963268f), power);
+}
+
+/*****************************************************************************/
+
+void FFT::InitBitRevTable()
+{
+ int i,j,m,temp;
+ bitrevtable = new int[NFREQ];
+
+ for (i=0; i<NFREQ; i++)
+ bitrevtable[i] = i;
+
+ for (i=0,j=0; i < NFREQ; i++)
+ {
+ if (j > i)
+ {
+ temp = bitrevtable[i];
+ bitrevtable[i] = bitrevtable[j];
+ bitrevtable[j] = temp;
+ }
+
+ m = NFREQ >> 1;
+
+ while (m >= 1 && j >= m)
+ {
+ j -= m;
+ m >>= 1;
+ }
+
+ j += m;
+ }
+}
+
+/*****************************************************************************/
+
+void FFT::InitCosSinTable()
+{
+
+ int i,dftsize,tabsize;
+ float theta;
+
+ dftsize = 2;
+ tabsize = 0;
+ while (dftsize <= NFREQ)
+ {
+ tabsize++;
+ dftsize <<= 1;
+ }
+
+ cossintable = new float[tabsize][2];
+
+ dftsize = 2;
+ i = 0;
+ while (dftsize <= NFREQ)
+ {
+ theta = (float)(-2.0f*PI/(float)dftsize);
+ cossintable[i][0] = (float)cosf(theta);
+ cossintable[i][1] = (float)sinf(theta);
+ i++;
+ dftsize <<= 1;
+ }
+}
+
+/*****************************************************************************/
+
+void FFT::time_to_frequency_domain(float *in_wavedata, float *out_spectraldata)
+{
+ // Converts time-domain samples from in_wavedata[]
+ // into frequency-domain samples in out_spectraldata[].
+ // The array lengths are the two parameters to Init().
+
+ // The last sample of the output data will represent the frequency
+ // that is 1/4th of the input sampling rate. For example,
+ // if the input wave data is sampled at 44,100 Hz, then the last
+ // sample of the spectral data output will represent the frequency
+ // 11,025 Hz. The first sample will be 0 Hz; the frequencies of
+ // the rest of the samples vary linearly in between.
+ // Note that since human hearing is limited to the range 200 - 20,000
+ // Hz. 200 is a low bass hum; 20,000 is an ear-piercing high shriek.
+ // Each time the frequency doubles, that sounds like going up an octave.
+ // That means that the difference between 200 and 300 Hz is FAR more
+ // than the difference between 5000 and 5100, for example!
+ // So, when trying to analyze bass, you'll want to look at (probably)
+ // the 200-800 Hz range; whereas for treble, you'll want the 1,400 -
+ // 11,025 Hz range.
+ // If you want to get 3 bands, try it this way:
+ // a) 11,025 / 200 = 55.125
+ // b) to get the number of octaves between 200 and 11,025 Hz, solve for n:
+ // 2^n = 55.125
+ // n = log 55.125 / log 2
+ // n = 5.785
+ // c) so each band should represent 5.785/3 = 1.928 octaves; the ranges are:
+ // 1) 200 - 200*2^1.928 or 200 - 761 Hz
+ // 2) 200*2^1.928 - 200*2^(1.928*2) or 761 - 2897 Hz
+ // 3) 200*2^(1.928*2) - 200*2^(1.928*3) or 2897 - 11025 Hz
+
+ // A simple sine-wave-based envelope is convolved with the waveform
+ // data before doing the FFT, to emeliorate the bad frequency response
+ // of a square (i.e. nonexistent) filter.
+
+ // You might want to slightly damp (blur) the input if your signal isn't
+ // of a very high quality, to reduce high-frequency noise that would
+ // otherwise show up in the output.
+
+ int j, m, i, dftsize, hdftsize, t;
+ float wr, wi, wpi, wpr, wtemp, tempr, tempi;
+
+ if (!bitrevtable) return;
+ //if (!envelope) return;
+ //if (!equalize) return;
+ if (!temp1) return;
+ if (!temp2) return;
+ if (!cossintable) return;
+
+ // 1. set up input to the fft
+ if (envelope)
+ {
+ for (i=0; i<NFREQ; i++)
+ {
+ int idx = bitrevtable[i];
+ if (idx < m_samples_in)
+ temp1[i] = in_wavedata[idx] * envelope[idx];
+ else
+ temp1[i] = 0;
+ }
+ }
+ else
+ {
+ for (i=0; i<NFREQ; i++)
+ {
+ int idx = bitrevtable[i];
+ if (idx < m_samples_in)
+ temp1[i] = in_wavedata[idx];// * envelope[idx];
+ else
+ temp1[i] = 0;
+ }
+ }
+ memset(temp2, 0, sizeof(float)*NFREQ);
+
+ // 2. perform FFT
+ float *real = temp1;
+ float *imag = temp2;
+ dftsize = 2;
+ t = 0;
+ while (dftsize <= NFREQ)
+ {
+ wpr = cossintable[t][0];
+ wpi = cossintable[t][1];
+ wr = 1.0f;
+ wi = 0.0f;
+ hdftsize = dftsize >> 1;
+
+ for (m = 0; m < hdftsize; m+=1)
+ {
+ for (i = m; i < NFREQ; i+=dftsize)
+ {
+ j = i + hdftsize;
+ tempr = wr*real[j] - wi*imag[j];
+ tempi = wr*imag[j] + wi*real[j];
+ real[j] = real[i] - tempr;
+ imag[j] = imag[i] - tempi;
+ real[i] += tempr;
+ imag[i] += tempi;
+ }
+
+ wr = (wtemp=wr)*wpr - wi*wpi;
+ wi = wi*wpr + wtemp*wpi;
+ }
+
+ dftsize <<= 1;
+ t++;
+ }
+
+ // 3. take the magnitude & equalize it (on a log10 scale) for output
+ if (equalize)
+ for (i=0; i<NFREQ/2; i++)
+ out_spectraldata[i] = equalize[i] * sqrtf(temp1[i]*temp1[i] + temp2[i]*temp2[i]);
+ else
+ for (i=0; i<NFREQ/2; i++)
+ out_spectraldata[i] = sqrtf(temp1[i]*temp1[i] + temp2[i]*temp2[i]);
+}
+
+/*****************************************************************************/ \ No newline at end of file