aboutsummaryrefslogtreecommitdiff
path: root/Src/Wasabi/bfc/draw
diff options
context:
space:
mode:
Diffstat (limited to 'Src/Wasabi/bfc/draw')
-rw-r--r--Src/Wasabi/bfc/draw/convolve.cpp60
-rw-r--r--Src/Wasabi/bfc/draw/convolve.h24
-rw-r--r--Src/Wasabi/bfc/draw/drawpoly.cpp458
-rw-r--r--Src/Wasabi/bfc/draw/drawpoly.h16
-rw-r--r--Src/Wasabi/bfc/draw/gradient.cpp309
-rw-r--r--Src/Wasabi/bfc/draw/gradient.h67
-rw-r--r--Src/Wasabi/bfc/draw/skinfilter.cpp17
-rw-r--r--Src/Wasabi/bfc/draw/skinfilter.h11
8 files changed, 962 insertions, 0 deletions
diff --git a/Src/Wasabi/bfc/draw/convolve.cpp b/Src/Wasabi/bfc/draw/convolve.cpp
new file mode 100644
index 00000000..2ac48930
--- /dev/null
+++ b/Src/Wasabi/bfc/draw/convolve.cpp
@@ -0,0 +1,60 @@
+#include <precomp.h>
+
+#include "convolve.h"
+
+#define RED(a) (((a)>>16)&0xff)
+#define GRN(a) (((a)>>8)&0xff)
+#define BLU(a) (((a)&0xff))
+#define ALP(a) (((a)>>24))
+
+Convolve3x3::Convolve3x3(ARGB32 *_bits, int _w, int _h) : bits(_bits), w(_w), h(_h) {
+ ZERO(vals);
+ multiplier = 0;
+}
+
+void Convolve3x3::setPos(int x, int y, float v) {
+ ASSERT(x >= -1 && x <= 1 && y >= -1 && y <= 1);
+ vals[y+1][x+1] = v;
+}
+
+void Convolve3x3::setMultiplier(int m) {
+ multiplier = m;
+}
+
+void Convolve3x3::convolve() {
+ if (bits == NULL || w <= 0 || h <= 0) return; // nothin'
+ MemMatrix<ARGB32> temp(w, h, bits); // make a copy
+ for (int y = 0; y < h; y++) {
+ for (int x = 0; x < w; x++) {
+ if (ALP(temp(x, y))<=1) continue;
+ float ra=0, rg=0, rb=0;
+ for (int a = -1; a <= 1; a++) {
+ for (int b = -1; b <= 1; b++) {
+ int px = x + a, py = y + b;
+ if (px < 0 || px >= w || py < 0 || py >= h) continue;
+ ARGB32 c = temp(px, py);
+ if (ALP(c) <= 1) continue;
+ ra += (float)RED(c) * vals[b][a] * multiplier;
+ rg += (float)GRN(c) * vals[b][a] * multiplier;
+ rb += (float)BLU(c) * vals[b][a] * multiplier;
+ }
+ }
+ unsigned int r = MINMAX((int)ra, 0, 255);
+ unsigned int g = MINMAX((int)rg, 0, 255);
+ unsigned int b = MINMAX((int)rb, 0, 255);
+ unsigned int lum = MAX(MAX(r, g), b);
+if (lum < 64) lum = 0;
+else if (lum > 192) lum = 255;
+ //bits[x+y*w] = (ALP(*temp.m(x, y))<<24)|(r<<16)|(g<<8)|(b);
+ bits[x+y*w] &= 0xffffff;
+ bits[x+y*w] |= (255-lum) << 24;
+//if (lum < 64) {
+// bits[x+y*w] &= 0xffff00ff;
+// bits[x+y*w] |= lum << 8;
+//} else {
+// bits[x+y*w] &= 0xff00ffff;
+// bits[x+y*w] |= lum << 16;
+//}
+ }
+ }
+}
diff --git a/Src/Wasabi/bfc/draw/convolve.h b/Src/Wasabi/bfc/draw/convolve.h
new file mode 100644
index 00000000..aac2e237
--- /dev/null
+++ b/Src/Wasabi/bfc/draw/convolve.h
@@ -0,0 +1,24 @@
+#ifndef _CONVOLVE_H
+#define _CONVOLVE_H
+
+#include "platform/types.h"
+// world's slowest crappiest convolve :P think it sucks? write a better one
+// and send it to me
+
+class Convolve3x3 {
+public:
+ Convolve3x3(ARGB32 *bits, int w, int h);
+
+ void setPos(int x, int y, float v);
+ void setMultiplier(int m);
+
+ void convolve();
+
+private:
+ ARGB32 *bits;
+ int w, h;
+ float vals[3][3];
+ float multiplier;
+};
+
+#endif
diff --git a/Src/Wasabi/bfc/draw/drawpoly.cpp b/Src/Wasabi/bfc/draw/drawpoly.cpp
new file mode 100644
index 00000000..02c84f33
--- /dev/null
+++ b/Src/Wasabi/bfc/draw/drawpoly.cpp
@@ -0,0 +1,458 @@
+#include <precomp.h>
+
+#include "drawpoly.h"
+#include <bfc/parse/pathparse.h>
+
+#define MAXPOINTS 32
+
+static ARGB32 *bits, color;
+static int w, h, across;
+struct Point2d {
+ int X, Y;
+};
+typedef struct Point2d Point2d; // bleh
+static Point2d points[MAXPOINTS];
+static int npoints;
+
+void Draw::beginPolygon(ARGB32 *bits, int w, int h, ARGB32 color) {
+ ::bits = bits;
+ ::w = w;
+ ::h = h;
+ ::color = color;
+ ::across = w;
+ npoints = 0;
+}
+
+void Draw::addPoint(int x, int y) {
+ if (npoints >= MAXPOINTS) return;
+ points[npoints].X = x;
+ points[npoints].Y = y;
+ npoints++;
+}
+
+static void premultiply(ARGB32 *m_pBits, int nwords) {
+ for (; nwords > 0; nwords--, m_pBits++) {
+ unsigned __int8 *pixel = (unsigned __int8 *)m_pBits;
+ unsigned int alpha = pixel[3];
+ if (alpha == 255) continue;
+ pixel[0] = (pixel[0] * alpha) >> 8; // blue
+ pixel[1] = (pixel[1] * alpha) >> 8; // green
+ pixel[2] = (pixel[2] * alpha) >> 8; // red
+ }
+}
+
+void Draw::drawPointList(ARGB32 *bits, int w, int h, const wchar_t *pointlist) {
+ if (pointlist == NULL || *pointlist == '\0') return;
+ PathParserW outer(pointlist, L"|");
+ const wchar_t *pl;
+ for (int i = 0; (pl = outer.enumString(i)) != NULL; i++)
+ {
+ PathParserW inner(pl, L"=");
+ ARGB32 color = WASABI_API_SKIN->parse(inner.enumStringSafe(1, L"255,255,255,255"), L"coloralpha");
+ int a = color & 0xff000000;
+ color = _byteswap_ulong(color<<8) | a;
+ premultiply(&color, 1);
+ beginPolygon(bits, w, h, color);
+ PathParserW eener(inner.enumStringSafe(0, L"0,0"), L";");
+ const wchar_t *cc;
+ for (int j = 0; (cc = eener.enumString(j)) != NULL; j++) {
+ PathParserW com(cc, L",");
+ const wchar_t *xs = com.enumStringSafe(0, L"0");
+ int x = wcschr(xs, '.') ? (int)floor(WTOF(xs) * w + .5f) : WTOI(xs);
+ const wchar_t *ys = com.enumStringSafe(1, L"0");
+ int y = wcschr(ys, '.') ? (int)floor(WTOF(ys) * h + .5f) : WTOI(ys);
+ addPoint(x, y);
+ }
+ endPolygon();
+ }
+}
+
+#define PIXEL ARGB32
+
+// this originally came from Michael Abrash's Zen of Graphics Programming
+// been modified a bit
+/* DRAWPOLY.H: Header file for polygon-filling code */
+
+/* Describes a single point (used for a single vertex) */
+
+//struct Point2d {
+// int X; /* X coordinate */
+// int Y; /* Y coordinate */
+//};
+
+//typedef struct Point2d Point2d;
+
+typedef struct {
+ int X, Y;
+} Point2dC;
+
+/* Describes a series of points (used to store a list of vertices that
+ describe a polygon; each vertex is assumed to connect to the two
+ adjacent vertices, and the last vertex is assumed to connect to the
+ first) */
+struct Point2dListHeader {
+ int Length; /* # of points */
+ struct Point2d *Point2dPtr; /* pointer to list of points */
+};
+
+typedef struct Point2dListHeader Point2dListHeader;
+
+/* Describes the beginning and ending X coordinates of a single
+ horizontal line */
+struct HLine {
+ int XStart; /* X coordinate of leftmost pixel in line */
+ int XEnd; /* X coordinate of rightmost pixel in line */
+};
+
+typedef struct {
+ int XStart, XEnd;
+} HLineColor;
+
+/* Describes a Length-long series of horizontal lines, all assumed to
+ be on contiguous scan lines starting at YStart and proceeding
+ downward (used to describe a scan-converted polygon to the
+ low-level hardware-dependent drawing code) */
+struct HLineList {
+ int Length; /* # of horizontal lines */
+ int YStart; /* Y coordinate of topmost line */
+ struct HLine * HLinePtr; /* pointer to list of horz lines */
+};
+
+static void DrawHorizontalLineList(struct HLineList * HLineListPtr, PIXEL *dest,
+ PIXEL Color) {
+ struct HLine *HLinePtr, *ptr;
+ int Length, Width, c;
+ PIXEL *ScreenPtr;
+
+ /* Point to the start of the first scan line on which to draw */
+ ScreenPtr = dest + HLineListPtr->YStart * across;
+ Length = HLineListPtr->Length;
+ /* Point to the XStart/XEnd descriptor for the first (top)
+ horizontal line */
+ HLinePtr = HLineListPtr->HLinePtr;
+
+ /* clip left/right */
+ for (ptr = HLinePtr, c = Length; c; c--) {
+ if (ptr->XStart < 0) ptr->XStart = 0;
+ if (ptr->XEnd >= w) ptr->XEnd = w - 1;
+ ptr++;
+ }
+ /* clip top */
+ if (HLineListPtr->YStart < 0) {
+ int skip = -HLineListPtr->YStart;
+ HLineListPtr->YStart = 0;
+ ScreenPtr += across * skip;
+ Length -= skip;
+ HLinePtr += skip;
+ }
+ /* clip bottom */
+ if (HLineListPtr->YStart + Length > h) {
+ Length -= (HLineListPtr->YStart + Length) - h;
+ }
+
+ /* Draw each horizontal line in turn, starting with the top one and
+ advancing one line each time */
+ while (Length-- > 0) {
+ /* Draw the whole horizontal line if it has a positive width */
+ if ((Width = HLinePtr->XEnd - HLinePtr->XStart + 1) > 0)
+// bmemsetw(ScreenPtr+HLinePtr->XStart, Color, Width);
+ MEMFILL<PIXEL>(ScreenPtr+HLinePtr->XStart, Color, Width);
+ HLinePtr++; /* point to next scan line X info */
+ ScreenPtr += across; /* point to next scan line start */
+ }
+}
+
+/* Scan converts an edge from (X1,Y1) to (X2,Y2), not including the
+ point at (X2,Y2). If SkipFirst == 1, the point at (X1,Y1) isn't
+ drawn; if SkipFirst == 0, it is. For each scan line, the pixel
+ closest to the scanned edge without being to the left of the
+ scanned edge is chosen. Uses an all-integer approach for speed and
+ precision
+
+ Link with L21-1.C, L21-3.C, and L22-1.C in Compact model.
+ Tested with Borland C++ 4.02 by Jim Mischel 12/16/94.
+*/
+
+static void ScanEdge(int X1, int Y1, int X2, int Y2, int SetXStart,
+ int SkipFirst, struct HLine **EdgePoint2dPtr) {
+ int DeltaX, Height, Width, AdvanceAmt, ErrorTerm, i;
+ int ErrorTermAdvance, XMajorAdvanceAmt;
+ struct HLine *WorkingEdgePoint2dPtr;
+
+ WorkingEdgePoint2dPtr = *EdgePoint2dPtr; /* avoid double dereference */
+ AdvanceAmt = ((DeltaX = X2 - X1) > 0) ? 1 : -1;
+ /* direction in which X moves (Y2 is
+ always > Y1, so Y always counts up) */
+
+ if ((Height = Y2 - Y1) <= 0) /* Y length of the edge */
+ return; /* guard against 0-length and horizontal edges */
+
+ /* Figure out whether the edge is vertical, diagonal, X-major
+ (mostly horizontal), or Y-major (mostly vertical) and handle
+ appropriately */
+ if ((Width = abs(DeltaX)) == 0) {
+ /* The edge is vertical; special-case by just storing the same
+ X coordinate for every scan line */
+ /* Scan the edge for each scan line in turn */
+ for (i = Height - SkipFirst; i-- > 0; WorkingEdgePoint2dPtr++) {
+ /* Store the X coordinate in the appropriate edge list */
+ if (SetXStart == 1)
+ WorkingEdgePoint2dPtr->XStart = X1;
+ else
+ WorkingEdgePoint2dPtr->XEnd = X1;
+ }
+ } else if (Width == Height) {
+ /* The edge is diagonal; special-case by advancing the X
+ coordinate 1 pixel for each scan line */
+ if (SkipFirst) /* skip the first point if so indicated */
+ X1 += AdvanceAmt; /* move 1 pixel to the left or right */
+ /* Scan the edge for each scan line in turn */
+ for (i = Height - SkipFirst; i-- > 0; WorkingEdgePoint2dPtr++) {
+ /* Store the X coordinate in the appropriate edge list */
+ if (SetXStart == 1)
+ WorkingEdgePoint2dPtr->XStart = X1;
+ else
+ WorkingEdgePoint2dPtr->XEnd = X1;
+ X1 += AdvanceAmt; /* move 1 pixel to the left or right */
+ }
+ } else if (Height > Width) {
+ /* Edge is closer to vertical than horizontal (Y-major) */
+ if (DeltaX >= 0)
+ ErrorTerm = 0; /* initial error term going left->right */
+ else
+ ErrorTerm = -Height + 1; /* going right->left */
+ if (SkipFirst) { /* skip the first point if so indicated */
+ /* Determine whether it's time for the X coord to advance */
+ if ((ErrorTerm += Width) > 0) {
+ X1 += AdvanceAmt; /* move 1 pixel to the left or right */
+ ErrorTerm -= Height; /* advance ErrorTerm to next point */
+ }
+ }
+ /* Scan the edge for each scan line in turn */
+ for (i = Height - SkipFirst; i-- > 0; WorkingEdgePoint2dPtr++) {
+ /* Store the X coordinate in the appropriate edge list */
+ if (SetXStart == 1)
+ WorkingEdgePoint2dPtr->XStart = X1;
+ else
+ WorkingEdgePoint2dPtr->XEnd = X1;
+ /* Determine whether it's time for the X coord to advance */
+ if ((ErrorTerm += Width) > 0) {
+ X1 += AdvanceAmt; /* move 1 pixel to the left or right */
+ ErrorTerm -= Height; /* advance ErrorTerm to correspond */
+ }
+ }
+ } else {
+ /* Edge is closer to horizontal than vertical (X-major) */
+ /* Minimum distance to advance X each time */
+ XMajorAdvanceAmt = (Width / Height) * AdvanceAmt;
+ /* Error term advance for deciding when to advance X 1 extra */
+ ErrorTermAdvance = Width % Height;
+ if (DeltaX >= 0)
+ ErrorTerm = 0; /* initial error term going left->right */
+ else
+ ErrorTerm = -Height + 1; /* going right->left */
+ if (SkipFirst) { /* skip the first point if so indicated */
+ X1 += XMajorAdvanceAmt; /* move X minimum distance */
+ /* Determine whether it's time for X to advance one extra */
+ if ((ErrorTerm += ErrorTermAdvance) > 0) {
+ X1 += AdvanceAmt; /* move X one more */
+ ErrorTerm -= Height; /* advance ErrorTerm to correspond */
+ }
+ }
+ /* Scan the edge for each scan line in turn */
+ for (i = Height - SkipFirst; i-- > 0; WorkingEdgePoint2dPtr++) {
+ /* Store the X coordinate in the appropriate edge list */
+ if (SetXStart == 1)
+ WorkingEdgePoint2dPtr->XStart = X1;
+ else
+ WorkingEdgePoint2dPtr->XEnd = X1;
+ X1 += XMajorAdvanceAmt; /* move X minimum distance */
+ /* Determine whether it's time for X to advance one extra */
+ if ((ErrorTerm += ErrorTermAdvance) > 0) {
+ X1 += AdvanceAmt; /* move X one more */
+ ErrorTerm -= Height; /* advance ErrorTerm to correspond */
+ }
+ }
+ }
+
+ *EdgePoint2dPtr = WorkingEdgePoint2dPtr; /* advance caller's ptr */
+}
+
+/* Color-fills a convex polygon. All vertices are offset by (XOffset,
+ YOffset). "Convex" means that every horizontal line drawn through
+ the polygon at any point would cross exactly two active edges
+ (neither horizontal lines nor zero-length edges count as active
+ edges; both are acceptable anywhere in the polygon), and that the
+ right & left edges never cross. (It's OK for them to touch, though,
+ so long as the right edge never crosses over to the left of the
+ left edge.) Nonconvex polygons won't be drawn properly. Returns 1
+ for success, 0 if memory allocation failed.
+
+ Compiled with Borland C++ 4.02. Link with L21-3.C.
+ Checked by Jim Mischel 11/30/94.
+ */
+
+/* Advances the index by one vertex forward through the vertex list,
+ wrapping at the end of the list */
+#define INDEX_FORWARD(Index) \
+ Index = (Index + 1) % VertexList->Length;
+
+/* Advances the index by one vertex backward through the vertex list,
+ wrapping at the start of the list */
+#define INDEX_BACKWARD(Index) \
+ Index = (Index - 1 + VertexList->Length) % VertexList->Length;
+
+/* Advances the index by one vertex either forward or backward through
+ the vertex list, wrapping at either end of the list */
+#define INDEX_MOVE(Index,Direction) \
+ if (Direction > 0) \
+ Index = (Index + 1) % VertexList->Length; \
+ else \
+ Index = (Index - 1 + VertexList->Length) % VertexList->Length;
+
+int FillConvexPolygon(struct Point2dListHeader *VertexList, PIXEL *dest,
+ PIXEL Color) {
+ int i, MinIndexL, MaxIndex, MinIndexR, SkipFirst, Temp;
+ int MinPoint2d_Y, MaxPoint2d_Y, TopIsFlat, LeftEdgeDir;
+ int NextIndex, CurrentIndex, PreviousIndex;
+ int DeltaXN, DeltaYN, DeltaXP, DeltaYP;
+ struct HLineList WorkingHLineList;
+ struct HLine *EdgePoint2dPtr;
+ struct Point2d *VertexPtr;
+
+ /* Point to the vertex list */
+ VertexPtr = VertexList->Point2dPtr;
+
+ /* Scan the list to find the top and bottom of the polygon */
+ if (VertexList->Length == 0)
+ return(1); /* reject null polygons */
+ MaxPoint2d_Y = MinPoint2d_Y = VertexPtr[MinIndexL = MaxIndex = 0].Y;
+ for (i = 1; i < VertexList->Length; i++) {
+ if (VertexPtr[i].Y < MinPoint2d_Y)
+ MinPoint2d_Y = VertexPtr[MinIndexL = i].Y; /* new top */
+ else if (VertexPtr[i].Y > MaxPoint2d_Y)
+ MaxPoint2d_Y = VertexPtr[MaxIndex = i].Y; /* new bottom */
+ }
+ if (MinPoint2d_Y == MaxPoint2d_Y)
+ return(1); /* polygon is 0-height; avoid infinite loop below */
+
+ /* Scan in ascending order to find the last top-edge point */
+ MinIndexR = MinIndexL;
+ while (VertexPtr[MinIndexR].Y == MinPoint2d_Y)
+ INDEX_FORWARD(MinIndexR);
+ INDEX_BACKWARD(MinIndexR); /* back up to last top-edge point */
+
+ /* Now scan in descending order to find the first top-edge point */
+ while (VertexPtr[MinIndexL].Y == MinPoint2d_Y)
+ INDEX_BACKWARD(MinIndexL);
+ INDEX_FORWARD(MinIndexL); /* back up to first top-edge point */
+
+ /* Figure out which direction through the vertex list from the top
+ vertex is the left edge and which is the right */
+ LeftEdgeDir = -1; /* assume left edge runs down thru vertex list */
+ if ((TopIsFlat = (VertexPtr[MinIndexL].X !=
+ VertexPtr[MinIndexR].X) ? 1 : 0) == 1) {
+ /* If the top is flat, just see which of the ends is leftmost */
+ if (VertexPtr[MinIndexL].X > VertexPtr[MinIndexR].X) {
+ LeftEdgeDir = 1; /* left edge runs up through vertex list */
+ Temp = MinIndexL; /* swap the indices so MinIndexL */
+ MinIndexL = MinIndexR; /* points to the start of the left */
+ MinIndexR = Temp; /* edge, similarly for MinIndexR */
+ }
+ } else {
+ /* Point to the downward end of the first line of each of the
+ two edges down from the top */
+ NextIndex = MinIndexR;
+ INDEX_FORWARD(NextIndex);
+ PreviousIndex = MinIndexL;
+ INDEX_BACKWARD(PreviousIndex);
+ /* Calculate X and Y lengths from the top vertex to the end of
+ the first line down each edge; use those to compare slopes
+ and see which line is leftmost */
+ DeltaXN = VertexPtr[NextIndex].X - VertexPtr[MinIndexL].X;
+ DeltaYN = VertexPtr[NextIndex].Y - VertexPtr[MinIndexL].Y;
+ DeltaXP = VertexPtr[PreviousIndex].X - VertexPtr[MinIndexL].X;
+ DeltaYP = VertexPtr[PreviousIndex].Y - VertexPtr[MinIndexL].Y;
+ if (((long)DeltaXN * DeltaYP - (long)DeltaYN * DeltaXP) < 0L) {
+ LeftEdgeDir = 1; /* left edge runs up through vertex list */
+ Temp = MinIndexL; /* swap the indices so MinIndexL */
+ MinIndexL = MinIndexR; /* points to the start of the left */
+ MinIndexR = Temp; /* edge, similarly for MinIndexR */
+ }
+ }
+
+ /* Set the # of scan lines in the polygon, skipping the bottom edge
+ and also skipping the top vertex if the top isn't flat because
+ in that case the top vertex has a right edge component, and set
+ the top scan line to draw, which is likewise the second line of
+ the polygon unless the top is flat */
+ if ((WorkingHLineList.Length =
+ MaxPoint2d_Y - MinPoint2d_Y - 1 + TopIsFlat) <= 0)
+ return(1); /* there's nothing to draw, so we're done */
+ //WorkingHLineList.YStart = YOffset + MinPoint2d_Y + 1 - TopIsFlat;
+ WorkingHLineList.YStart = MinPoint2d_Y + 1 - TopIsFlat;
+
+ /* Get memory in which to store the line list we generate */
+ if ((WorkingHLineList.HLinePtr =
+ (struct HLine *) (malloc(sizeof(struct HLine) *
+ WorkingHLineList.Length))) == NULL)
+ return(0); /* couldn't get memory for the line list */
+
+ /* Scan the left edge and store the boundary points in the list */
+ /* Initial pointer for storing scan converted left-edge coords */
+ EdgePoint2dPtr = WorkingHLineList.HLinePtr;
+ /* Start from the top of the left edge */
+ PreviousIndex = CurrentIndex = MinIndexL;
+ /* Skip the first point of the first line unless the top is flat;
+ if the top isn't flat, the top vertex is exactly on a right
+ edge and isn't drawn */
+ SkipFirst = TopIsFlat ? 0 : 1;
+ /* Scan convert each line in the left edge from top to bottom */
+ do {
+ INDEX_MOVE(CurrentIndex,LeftEdgeDir);
+ ScanEdge(VertexPtr[PreviousIndex].X,
+ VertexPtr[PreviousIndex].Y,
+ VertexPtr[CurrentIndex].X,
+ VertexPtr[CurrentIndex].Y, 1, SkipFirst, &EdgePoint2dPtr);
+ PreviousIndex = CurrentIndex;
+ SkipFirst = 0; /* scan convert the first point from now on */
+ } while (CurrentIndex != MaxIndex);
+
+ /* Scan the right edge and store the boundary points in the list */
+ EdgePoint2dPtr = WorkingHLineList.HLinePtr;
+ PreviousIndex = CurrentIndex = MinIndexR;
+ SkipFirst = TopIsFlat ? 0 : 1;
+ /* Scan convert the right edge, top to bottom. X coordinates are
+ adjusted 1 to the left, effectively causing scan conversion of
+ the nearest points to the left of but not exactly on the edge */
+ do {
+ INDEX_MOVE(CurrentIndex,-LeftEdgeDir);
+ //ScanEdge(VertexPtr[PreviousIndex].X + XOffset - 1,
+ ScanEdge(VertexPtr[PreviousIndex].X - 1,
+ VertexPtr[PreviousIndex].Y,
+ //VertexPtr[CurrentIndex].X + XOffset - 1,
+ VertexPtr[CurrentIndex].X - 1,
+ VertexPtr[CurrentIndex].Y, 0, SkipFirst, &EdgePoint2dPtr);
+ PreviousIndex = CurrentIndex;
+ SkipFirst = 0; /* scan convert the first point from now on */
+ } while (CurrentIndex != MaxIndex);
+
+ /* Draw the line list representing the scan converted polygon */
+ //CUT (*drawfn)(&WorkingHLineList, dest, Color, vc);
+ DrawHorizontalLineList(&WorkingHLineList, dest, Color);
+
+ /* Release the line list's memory and we're successfully done */
+ free(WorkingHLineList.HLinePtr);
+ return(1);
+}
+
+// done with abrashitude
+
+void Draw::endPolygon() {
+ if (npoints == 0) return;
+
+ struct Point2dListHeader head;
+ head.Length = npoints;
+ head.Point2dPtr = &points[0];
+ FillConvexPolygon(&head, bits, color);
+}
diff --git a/Src/Wasabi/bfc/draw/drawpoly.h b/Src/Wasabi/bfc/draw/drawpoly.h
new file mode 100644
index 00000000..c8bea56d
--- /dev/null
+++ b/Src/Wasabi/bfc/draw/drawpoly.h
@@ -0,0 +1,16 @@
+#ifndef _DRAWPOLY_H
+#define _DRAWPOLY_H
+
+#include <bfc/wasabi_std.h>
+
+class Draw {
+public:
+ static void beginPolygon(ARGB32 *bits, int w, int h, ARGB32 color);
+ static void addPoint(int x, int y);
+ static void endPolygon();
+ static void drawPointList(ARGB32 *bits, int w, int h, const wchar_t *pointlist);
+};
+
+// x,y;x,y;x,y;x,y=R,G,B|x,y;x,y;x,y;=R,G,B
+
+#endif
diff --git a/Src/Wasabi/bfc/draw/gradient.cpp b/Src/Wasabi/bfc/draw/gradient.cpp
new file mode 100644
index 00000000..b8468ee0
--- /dev/null
+++ b/Src/Wasabi/bfc/draw/gradient.cpp
@@ -0,0 +1,309 @@
+#include <precomp.h>
+
+#include "gradient.h"
+
+#include <math.h>//floor
+#include <bfc/ptrlist.h>
+#include <bfc/parse/pathparse.h>
+
+
+#define DEFAULT_GRAD_MODE L"linear"
+
+template<class T> inline void SWAP(T &a, T &b) {
+ T c = a;
+ a = b;
+ b = c;
+}
+
+
+
+
+inline unsigned int LERPu(unsigned int a, unsigned int b, double p) {
+// ASSERT(p >= 0);
+// ASSERT(p <= 1.f);
+ unsigned int ret = (unsigned int)((double)b * p + (double)a * (1. - p));
+ return ret;
+}
+
+inline float LERPf(double a, double b, float p) {
+// ASSERT(p >= 0);
+// ASSERT(p <= 1.f);
+ return (float)(b * p + a * (1. - p));
+}
+
+Gradient::Gradient() :
+ gammagroup(L"")
+{
+ gradient_x1 = 0.0f;
+ gradient_y1 = 0.0f;
+ gradient_x2 = 1.0f;
+ gradient_y2 = 1.0f;
+ reverse_colors = 0;
+ antialias = 0;
+ mode = DEFAULT_GRAD_MODE;
+ list.addItem(new GradientPoint(0.0f, 0xff00ff00));
+ list.addItem(new GradientPoint(.5, 0x000000ff));
+ list.addItem(new GradientPoint(1.0f, 0xffff0000));
+}
+
+Gradient::~Gradient() {
+ list.deleteAll();
+}
+
+void Gradient::setX1(float x1) {
+ gradient_x1 = x1;
+ onParamChange();
+}
+
+void Gradient::setY1(float y1) {
+ gradient_y1 = y1;
+ onParamChange();
+}
+
+void Gradient::setX2(float x2) {
+ gradient_x2 = x2;
+ onParamChange();
+}
+
+void Gradient::setY2(float y2) {
+ gradient_y2 = y2;
+ onParamChange();
+}
+
+void Gradient::clearPoints() {
+ list.deleteAll();
+ onParamChange();
+}
+
+void Gradient::addPoint(float pos, ARGB32 color)
+{
+ list.addItem(new GradientPoint(pos, color, gammagroup));
+ onParamChange();
+}
+
+void Gradient::setPoints(const wchar_t *pointlist)
+{
+ clearPoints();
+ if (pointlist == NULL || *pointlist == '\0') return;
+// 0.5=233,445,245,123;
+ PathParserW pp(pointlist, L";");
+ if (pp.getNumStrings() <= 0) return;
+ for (int i = 0; i < pp.getNumStrings(); i++)
+ {
+ PathParserW rp(pp.enumString(i), L"=");
+ if (rp.getNumStrings() != 2)
+ continue;
+ float pos = (float)WTOF(rp.enumString(0));
+ ARGB32 color = (ARGB32)WASABI_API_SKIN->parse(rp.enumString(1), L"coloralpha");
+ addPoint(pos, color);
+ }
+}
+
+void Gradient::setReverseColors(int c) {
+ reverse_colors = c;
+}
+
+void Gradient::setAntialias(int c) {
+ antialias = c;
+}
+
+void Gradient::setMode(const wchar_t *_mode) {
+ mode = _mode;
+ if (mode.isempty())
+ mode = DEFAULT_GRAD_MODE;
+}
+
+void Gradient::setGammaGroup(const wchar_t *group) {
+ gammagroup = group;
+ // reset our points
+ foreach(list)
+ list.getfor()->color.setColorGroup(group);
+ endfor
+}
+
+static inline ARGB32 colorLerp(ARGB32 color1, ARGB32 color2, double pos) {
+ unsigned int a1 = (color1>>24) & 0xff;
+ unsigned int a2 = (color2>>24) & 0xff;
+ unsigned int r1 = (color1>>16) & 0xff;
+ unsigned int r2 = (color2>>16) & 0xff;
+ unsigned int g1 = (color1>>8) & 0xff;
+ unsigned int g2 = (color2>>8) & 0xff;
+ unsigned int b1 = (color1) & 0xff;
+ unsigned int b2 = (color2) & 0xff;
+ return (LERPu(a1, a2, pos)<<24) | (LERPu(r1, r2, pos) << 16) | (LERPu(g1,g2,pos)<<8) | LERPu(b1, b2, pos);
+}
+
+void Gradient::renderGrad(ARGB32 *ptr, int len, int *positions) {
+
+ int npos = list.getNumItems();
+ ASSERT(npos >= 2);
+
+ ARGB32 color1, color2;
+ for (int i = 0; i < npos-1; i++) {
+ color1 = list.q(i)->color.getColor();
+ color2 = list.q(i+1)->color.getColor();
+
+ if (reverse_colors) {
+ color1 = BGRATOARGB(color1);
+ color2 = BGRATOARGB(color2);
+ }
+
+ int x1 = positions[i];
+ int x2 = positions[i+1];
+ if (x1 == x2) continue;
+ // hflip if need be
+ if (x1 > x2) {
+ SWAP(x1, x2);
+ SWAP(color1, color2);
+ }
+ float c = 0;
+ float segment_len = (float)((x2 - x1)+1);
+
+ if (x1 < 0) { // clip left
+ c += -x1;
+ x1 = 0;
+ }
+ for (int x = x1; x < x2; x++, c += 1.0f) {
+ if (x >= len) break; // clip right
+ ptr[x] = colorLerp(color1, color2, c / segment_len);
+ }
+ }
+#if 0//later
+ // fill in left if needed
+ if (positions[0] > 0) MEMFILL<ARGB32>(ptr, list.q(0)->color, positions[0]);
+
+ // and right if needed
+ int rpos = positions[npos-1];
+ if (rpos < len) MEMFILL<ARGB32>(ptr+rpos, list.getLast()->color, len-rpos);
+#endif
+}
+
+void Gradient::renderGradient(ARGB32 *bits, int w, int h, int pitch)
+{
+ if (pitch == 0)
+ pitch = w;
+
+ list.sort();
+
+ ARGB32 default_color = 0xffff00ff;
+ if (list.getNumItems() == 1) default_color = list.q(0)->color.getColor();
+ // blank it out to start
+ if (pitch == w)
+ MEMFILL<ARGB32>(bits, default_color, w * h);
+ else
+ {
+ for (int i=0;i<h;i++)
+ MEMFILL<ARGB32>(bits+i*pitch, default_color, w);
+ }
+
+ if (list.getNumItems() > 1) {
+ if (mode.iscaseequal(L"linear")) {
+//FUCKO: not if endcaps are filled
+
+ // force non-vertical lines
+ if (ABS(gradient_x1 - gradient_x2) < 0.0005f) gradient_x2 = gradient_x1+0.0005f;
+
+ double px1 = gradient_x1 * w, py1 = gradient_y1 * h;
+ double px2 = gradient_x2 * w, py2 = gradient_y2 * h;
+
+ // convert to y = mx + b
+ double m = (py2 - py1)/(px2 - px1);
+ m = -1.f/m; // invert the slope
+
+ int nitems = list.getNumItems();
+
+ // get the in-pixels x and y for points on the gradient
+ for (int i = 0; i < nitems; i++) {
+ GradientPoint *gp = list.q(i);
+ // need x and y given pos
+ gp->x = LERPf(px1, px2, gp->pos);
+ gp->y = LERPf(py1, py2, gp->pos);
+ }
+
+ MemBlock<int> positions(nitems);
+ for (int _y = 0; _y < h; _y++) {
+ // project all the color points onto this scanline
+ for (int i = 0; i < nitems; i++) {
+ GradientPoint *gp = list.q(i);
+// y = mx + b
+// b = y - mx;
+ double newb = gp->y - m * gp->x;
+// y = mx + newb
+// y - newb = mx
+// (y - newb)/m = x
+ double xxx = (_y - newb)/m;
+ positions[i] = (int)floor(xxx+0.5f);
+ }
+ renderGrad(bits+_y*pitch, w, positions);
+ }
+ } else if (mode.iscaseequal(L"circular")) {
+ double tot = SQRT(SQR(gradient_x1 - gradient_x2) + SQR(gradient_y1 - gradient_y2));
+ foreach(list)
+ GradientPoint *gp = list.getfor();
+ gp->dist = gp->pos * tot;
+ endfor
+
+ ARGB32 *dst = bits;
+ for (int y = 0; y < h; y++) {
+ for (int x = 0; x < w; x++) {
+ ARGB32 c;
+ if (antialias) {
+ double fx = (((double)x)-0.5f) / (double)w;
+ double fy = (((double)y)-0.5f) / (double)h;
+ ARGB32 ul = getPixelCirc(fx, fy);
+ fx = (((double)x)+0.5f) / (double)w;
+ fy = (((double)y)-0.5f) / (double)h;
+ ARGB32 ur = getPixelCirc(fx, fy);
+ fx = (((double)x)+0.5f) / (double)w;
+ fy = (((double)y)+0.5f) / (double)h;
+ ARGB32 lr = getPixelCirc(fx, fy);
+ fx = (((double)x)-0.5f) / (double)w;
+ fy = (((double)y)+0.5f) / (double)h;
+ ARGB32 ll = getPixelCirc(fx, fy);
+ c = colorLerp(colorLerp(ll, lr, 0.5f), colorLerp(ul, ur, 0.5f), 0.5);
+ } else {
+ double fy = (double)y / (double)h;
+ double fx = (double)x / (double)w;
+ c = getPixelCirc(fx, fy);
+ }
+ *dst++ = c;
+ }
+ dst += (pitch-w);
+ }
+ }
+ }//list.getNumItems()>1
+
+ if (pitch == w)
+ premultiplyARGB32(bits, w * h);
+ else
+ {
+ for (int i=0;i<h;i++)
+ premultiplyARGB32(bits+i*pitch, w);
+ }
+
+}
+
+ARGB32 Gradient::getPixelCirc(double fx, double fy) {
+ int nitems = list.getNumItems();
+ //double dist = SQR(fx - gradient_x1) + SQR(fy - gradient_y1);
+ double dist = SQRT(SQR(fx - gradient_x1) + SQR(fy - gradient_y1));
+ ARGB32 c = 0xff00ff00;
+ if (dist <= list.q(0)->dist)
+ c = list.q(0)->color.getColor();
+ else if (dist >= list.getLast()->dist)
+ c = list.getLast()->color.getColor();
+ else for (int i = 0; i < nitems-1; i++) {
+ if (list.q(i)->dist <= dist && list.q(i+1)->dist >= dist) {
+ double pdist = list.q(i+1)->dist - list.q(i)->dist;
+ double pp = dist - list.q(i)->dist;
+ pp /= pdist;
+ if (list.q(i)->color.getColor() == list.q(i+1)->color.getColor())
+ c = list.q(i)->color.getColor();
+ else
+ c = colorLerp(list.q(i)->color.getColor(), list.q(i+1)->color.getColor(), pp);
+ break;
+ }
+ }
+ if (reverse_colors) c = BGRATOARGB(c);
+ return c;
+}
diff --git a/Src/Wasabi/bfc/draw/gradient.h b/Src/Wasabi/bfc/draw/gradient.h
new file mode 100644
index 00000000..1e721ee9
--- /dev/null
+++ b/Src/Wasabi/bfc/draw/gradient.h
@@ -0,0 +1,67 @@
+#ifndef _GRADIENT_H
+#define _GRADIENT_H
+
+#include <bfc/wasabi_std.h>
+#include <bfc/string/StringW.h>
+#include <tataki/color/filteredcolor.h>
+
+class GradientPoint
+{
+public:
+ GradientPoint(float p, ARGB32 c, const wchar_t *group=L"") : pos(p), dist(0), color(c, group), x(0), y(0) { }
+ float pos;
+ double dist;
+ FilteredColor color;
+ float x, y;
+ static int compareItem(GradientPoint *p1, GradientPoint* p2) {
+ int r = CMP3(p1->pos, p2->pos);
+ if (r == 0) return CMP3(p1, p2);
+ else return r;
+ }
+};
+
+
+class Gradient
+{
+public:
+ Gradient();
+ virtual ~Gradient();
+
+ void setX1(float x1);
+ void setY1(float y1);
+ void setX2(float x2);
+ void setY2(float y2);
+
+ void clearPoints();
+ void addPoint(float pos, ARGB32 color);
+
+ // "pos=color;pos=color" "0.25=34,45,111"
+ void setPoints(const wchar_t *str);
+
+ void setReverseColors(int c);
+
+ void setAntialias(int c);
+
+ void setMode(const wchar_t *mode);
+
+ void setGammaGroup(const wchar_t *group);
+
+ // note: this will automatically premultiply against alpha
+ void renderGradient(ARGB32 *bits, int width, int height, int pitch=0);
+
+protected:
+ virtual void onParamChange() { }
+
+ ARGB32 getPixelCirc(double x, double y);
+
+private:
+ float gradient_x1, gradient_y1, gradient_x2, gradient_y2;
+ class GradientList : public PtrListQuickSorted<GradientPoint, GradientPoint> { };
+ GradientList list;
+ void renderGrad(ARGB32 *bits, int len, int *positions);
+ int reverse_colors;
+ int antialias;
+ StringW mode, gammagroup;
+};
+
+#endif
diff --git a/Src/Wasabi/bfc/draw/skinfilter.cpp b/Src/Wasabi/bfc/draw/skinfilter.cpp
new file mode 100644
index 00000000..4ebbb364
--- /dev/null
+++ b/Src/Wasabi/bfc/draw/skinfilter.cpp
@@ -0,0 +1,17 @@
+#include <precomp.h>
+
+#include "skinfilter.h"
+
+#include <studio/services/svc_skinfilter.h>
+
+void ApplySkinFilters::apply(const char *elementid, const char *forced_gammagroup, ARGB32 *bits, int w, int h, int bpp) {
+ if ((elementid == NULL && forced_gammagroup == NULL) || bits == NULL || w <= 0 || h <= 0) return;
+ SkinFilterEnum sfe;
+
+ while (1) {
+ svc_skinFilter *obj = sfe.getNext(FALSE);
+ if (!obj) break;
+ obj->filterBitmap((unsigned char *)bits, w, h, bpp, elementid, forced_gammagroup);
+ sfe.getLastFactory()->releaseInterface(obj);
+ }
+}
diff --git a/Src/Wasabi/bfc/draw/skinfilter.h b/Src/Wasabi/bfc/draw/skinfilter.h
new file mode 100644
index 00000000..5b1b417f
--- /dev/null
+++ b/Src/Wasabi/bfc/draw/skinfilter.h
@@ -0,0 +1,11 @@
+#ifndef _SKINFILTER_H
+#define _SKINFILTER_H
+
+#include <bfc/std.h>
+
+class ApplySkinFilters {
+public:
+ static void apply(const char *element_id, const char *forced_gammagroup, ARGB32 *bits, int w, int h, int bpp=32);
+};
+
+#endif