diff options
Diffstat (limited to 'Src/external_dependencies/openmpt-trunk/soundlib/opal.h')
-rw-r--r-- | Src/external_dependencies/openmpt-trunk/soundlib/opal.h | 1345 |
1 files changed, 1345 insertions, 0 deletions
diff --git a/Src/external_dependencies/openmpt-trunk/soundlib/opal.h b/Src/external_dependencies/openmpt-trunk/soundlib/opal.h new file mode 100644 index 00000000..760cda20 --- /dev/null +++ b/Src/external_dependencies/openmpt-trunk/soundlib/opal.h @@ -0,0 +1,1345 @@ +// This is the Opal OPL3 emulator from Reality Adlib Tracker v2.0a (http://www.3eality.com/productions/reality-adlib-tracker). +// It was released by Shayde/Reality into the public domain. +// Minor modifications to silence some warnings and fix a bug in the envelope generator have been applied. +// Additional fixes by JP Cimalando. + +/* + + The Opal OPL3 emulator. + + Note: this is not a complete emulator, just enough for Reality Adlib Tracker tunes. + + Missing features compared to a real OPL3: + + - Timers/interrupts + - OPL3 enable bit (it defaults to always on) + - CSW mode + - Test register + - Percussion mode + +*/ + + + +#include <cstdint> + + + +//================================================================================================== +// Opal class. +//================================================================================================== +class Opal { + + class Channel; + + // Various constants + enum { + OPL3SampleRate = 49716, + NumChannels = 18, + NumOperators = 36, + + EnvOff = -1, + EnvAtt, + EnvDec, + EnvSus, + EnvRel, + }; + + // A single FM operator + class Operator { + + public: + Operator(); + void SetMaster(Opal *opal) { Master = opal; } + void SetChannel(Channel *chan) { Chan = chan; } + + int16_t Output(uint16_t keyscalenum, uint32_t phase_step, int16_t vibrato, int16_t mod = 0, int16_t fbshift = 0); + + void SetKeyOn(bool on); + void SetTremoloEnable(bool on); + void SetVibratoEnable(bool on); + void SetSustainMode(bool on); + void SetEnvelopeScaling(bool on); + void SetFrequencyMultiplier(uint16_t scale); + void SetKeyScale(uint16_t scale); + void SetOutputLevel(uint16_t level); + void SetAttackRate(uint16_t rate); + void SetDecayRate(uint16_t rate); + void SetSustainLevel(uint16_t level); + void SetReleaseRate(uint16_t rate); + void SetWaveform(uint16_t wave); + + void ComputeRates(); + void ComputeKeyScaleLevel(); + + protected: + Opal * Master; // Master object + Channel * Chan; // Owning channel + uint32_t Phase; // The current offset in the selected waveform + uint16_t Waveform; // The waveform id this operator is using + uint16_t FreqMultTimes2; // Frequency multiplier * 2 + int EnvelopeStage; // Which stage the envelope is at (see Env* enums above) + int16_t EnvelopeLevel; // 0 - $1FF, 0 being the loudest + uint16_t OutputLevel; // 0 - $FF + uint16_t AttackRate; + uint16_t DecayRate; + uint16_t SustainLevel; + uint16_t ReleaseRate; + uint16_t AttackShift; + uint16_t AttackMask; + uint16_t AttackAdd; + const uint16_t *AttackTab; + uint16_t DecayShift; + uint16_t DecayMask; + uint16_t DecayAdd; + const uint16_t *DecayTab; + uint16_t ReleaseShift; + uint16_t ReleaseMask; + uint16_t ReleaseAdd; + const uint16_t *ReleaseTab; + uint16_t KeyScaleShift; + uint16_t KeyScaleLevel; + int16_t Out[2]; + bool KeyOn; + bool KeyScaleRate; // Affects envelope rate scaling + bool SustainMode; // Whether to sustain during the sustain phase, or release instead + bool TremoloEnable; + bool VibratoEnable; + }; + + // A single channel, which can contain two or more operators + class Channel { + + public: + Channel(); + void SetMaster(Opal *opal) { Master = opal; } + void SetOperators(Operator *a, Operator *b, Operator *c, Operator *d) { + Op[0] = a; + Op[1] = b; + Op[2] = c; + Op[3] = d; + if (a) + a->SetChannel(this); + if (b) + b->SetChannel(this); + if (c) + c->SetChannel(this); + if (d) + d->SetChannel(this); + } + + void Output(int16_t &left, int16_t &right); + void SetEnable(bool on) { Enable = on; } + void SetChannelPair(Channel *pair) { ChannelPair = pair; } + + void SetFrequencyLow(uint16_t freq); + void SetFrequencyHigh(uint16_t freq); + void SetKeyOn(bool on); + void SetOctave(uint16_t oct); + void SetLeftEnable(bool on); + void SetRightEnable(bool on); + void SetFeedback(uint16_t val); + void SetModulationType(uint16_t type); + + uint16_t GetFreq() const { return Freq; } + uint16_t GetOctave() const { return Octave; } + uint16_t GetKeyScaleNumber() const { return KeyScaleNumber; } + uint16_t GetModulationType() const { return ModulationType; } + Channel * GetChannelPair() const { return ChannelPair; } + + void ComputeKeyScaleNumber(); + + protected: + void ComputePhaseStep(); + + Operator * Op[4]; + + Opal * Master; // Master object + uint16_t Freq; // Frequency; actually it's a phase stepping value + uint16_t Octave; // Also known as "block" in Yamaha parlance + uint32_t PhaseStep; + uint16_t KeyScaleNumber; + uint16_t FeedbackShift; + uint16_t ModulationType; + Channel * ChannelPair; + bool Enable; + bool LeftEnable, RightEnable; + }; + + public: + Opal(int sample_rate); + Opal(const Opal &) = delete; + Opal(Opal &&) = delete; + ~Opal(); + + void SetSampleRate(int sample_rate); + void Port(uint16_t reg_num, uint8_t val); + void Sample(int16_t *left, int16_t *right); + + protected: + void Init(int sample_rate); + void Output(int16_t &left, int16_t &right); + + int32_t SampleRate; + int32_t SampleAccum; + int16_t LastOutput[2], CurrOutput[2]; + Channel Chan[NumChannels]; + Operator Op[NumOperators]; +// uint16_t ExpTable[256]; +// uint16_t LogSinTable[256]; + uint16_t Clock; + uint16_t TremoloClock; + uint16_t TremoloLevel; + uint16_t VibratoTick; + uint16_t VibratoClock; + bool NoteSel; + bool TremoloDepth; + bool VibratoDepth; + + static const uint16_t RateTables[4][8]; + static const uint16_t ExpTable[256]; + static const uint16_t LogSinTable[256]; +}; +//-------------------------------------------------------------------------------------------------- +const uint16_t Opal::RateTables[4][8] = { + { 1, 0, 1, 0, 1, 0, 1, 0 }, + { 1, 0, 1, 0, 0, 0, 1, 0 }, + { 1, 0, 0, 0, 1, 0, 0, 0 }, + { 1, 0, 0, 0, 0, 0, 0, 0 }, +}; +//-------------------------------------------------------------------------------------------------- +const uint16_t Opal::ExpTable[0x100] = { + 1018, 1013, 1007, 1002, 996, 991, 986, 980, 975, 969, 964, 959, 953, 948, 942, 937, + 932, 927, 921, 916, 911, 906, 900, 895, 890, 885, 880, 874, 869, 864, 859, 854, + 849, 844, 839, 834, 829, 824, 819, 814, 809, 804, 799, 794, 789, 784, 779, 774, + 770, 765, 760, 755, 750, 745, 741, 736, 731, 726, 722, 717, 712, 708, 703, 698, + 693, 689, 684, 680, 675, 670, 666, 661, 657, 652, 648, 643, 639, 634, 630, 625, + 621, 616, 612, 607, 603, 599, 594, 590, 585, 581, 577, 572, 568, 564, 560, 555, + 551, 547, 542, 538, 534, 530, 526, 521, 517, 513, 509, 505, 501, 496, 492, 488, + 484, 480, 476, 472, 468, 464, 460, 456, 452, 448, 444, 440, 436, 432, 428, 424, + 420, 416, 412, 409, 405, 401, 397, 393, 389, 385, 382, 378, 374, 370, 367, 363, + 359, 355, 352, 348, 344, 340, 337, 333, 329, 326, 322, 318, 315, 311, 308, 304, + 300, 297, 293, 290, 286, 283, 279, 276, 272, 268, 265, 262, 258, 255, 251, 248, + 244, 241, 237, 234, 231, 227, 224, 220, 217, 214, 210, 207, 204, 200, 197, 194, + 190, 187, 184, 181, 177, 174, 171, 168, 164, 161, 158, 155, 152, 148, 145, 142, + 139, 136, 133, 130, 126, 123, 120, 117, 114, 111, 108, 105, 102, 99, 96, 93, + 90, 87, 84, 81, 78, 75, 72, 69, 66, 63, 60, 57, 54, 51, 48, 45, + 42, 40, 37, 34, 31, 28, 25, 22, 20, 17, 14, 11, 8, 6, 3, 0, +}; +//-------------------------------------------------------------------------------------------------- +const uint16_t Opal::LogSinTable[0x100] = { + 2137, 1731, 1543, 1419, 1326, 1252, 1190, 1137, 1091, 1050, 1013, 979, 949, 920, 894, 869, + 846, 825, 804, 785, 767, 749, 732, 717, 701, 687, 672, 659, 646, 633, 621, 609, + 598, 587, 576, 566, 556, 546, 536, 527, 518, 509, 501, 492, 484, 476, 468, 461, + 453, 446, 439, 432, 425, 418, 411, 405, 399, 392, 386, 380, 375, 369, 363, 358, + 352, 347, 341, 336, 331, 326, 321, 316, 311, 307, 302, 297, 293, 289, 284, 280, + 276, 271, 267, 263, 259, 255, 251, 248, 244, 240, 236, 233, 229, 226, 222, 219, + 215, 212, 209, 205, 202, 199, 196, 193, 190, 187, 184, 181, 178, 175, 172, 169, + 167, 164, 161, 159, 156, 153, 151, 148, 146, 143, 141, 138, 136, 134, 131, 129, + 127, 125, 122, 120, 118, 116, 114, 112, 110, 108, 106, 104, 102, 100, 98, 96, + 94, 92, 91, 89, 87, 85, 83, 82, 80, 78, 77, 75, 74, 72, 70, 69, + 67, 66, 64, 63, 62, 60, 59, 57, 56, 55, 53, 52, 51, 49, 48, 47, + 46, 45, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, + 29, 28, 27, 26, 25, 24, 23, 23, 22, 21, 20, 20, 19, 18, 17, 17, + 16, 15, 15, 14, 13, 13, 12, 12, 11, 10, 10, 9, 9, 8, 8, 7, + 7, 7, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, + 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, +}; + + + +//================================================================================================== +// This is the temporary code for generating the above tables. Maths and data from this nice +// reverse-engineering effort: +// +// https://docs.google.com/document/d/18IGx18NQY_Q1PJVZ-bHywao9bhsDoAqoIn1rIm42nwo/edit +//================================================================================================== +#if 0 +#include <math.h> + +void GenerateTables() { + + // Build the exponentiation table (reversed from the official OPL3 ROM) + FILE *fd = fopen("exptab.txt", "wb"); + if (fd) { + for (int i = 0; i < 0x100; i++) { + int v = (pow(2, (0xFF - i) / 256.0) - 1) * 1024 + 0.5; + if (i & 15) + fprintf(fd, " %4d,", v); + else + fprintf(fd, "\n\t%4d,", v); + } + fclose(fd); + } + + // Build the log-sin table + fd = fopen("sintab.txt", "wb"); + if (fd) { + for (int i = 0; i < 0x100; i++) { + int v = -log(sin((i + 0.5) * 3.1415926535897933 / 256 / 2)) / log(2) * 256 + 0.5; + if (i & 15) + fprintf(fd, " %4d,", v); + else + fprintf(fd, "\n\t%4d,", v); + } + fclose(fd); + } +} +#endif + + + +//================================================================================================== +// Constructor/destructor. +//================================================================================================== +Opal::Opal(int sample_rate) { + + Init(sample_rate); +} +//-------------------------------------------------------------------------------------------------- +Opal::~Opal() { +} + + + +//================================================================================================== +// Initialise the emulation. +//================================================================================================== +void Opal::Init(int sample_rate) { + + Clock = 0; + TremoloClock = 0; + TremoloLevel = 0; + VibratoTick = 0; + VibratoClock = 0; + NoteSel = false; + TremoloDepth = false; + VibratoDepth = false; + +// // Build the exponentiation table (reversed from the official OPL3 ROM) +// for (int i = 0; i < 0x100; i++) +// ExpTable[i] = (pow(2, (0xFF - i) / 256.0) - 1) * 1024 + 0.5; +// +// // Build the log-sin table +// for (int i = 0; i < 0x100; i++) +// LogSinTable[i] = -log(sin((i + 0.5) * 3.1415926535897933 / 256 / 2)) / log(2) * 256 + 0.5; + + // Let sub-objects know where to find us + for (int i = 0; i < NumOperators; i++) + Op[i].SetMaster(this); + + for (int i = 0; i < NumChannels; i++) + Chan[i].SetMaster(this); + + // Add the operators to the channels. Note, some channels can't use all the operators + // FIXME: put this into a separate routine + const int chan_ops[] = { + 0, 1, 2, 6, 7, 8, 12, 13, 14, 18, 19, 20, 24, 25, 26, 30, 31, 32, + }; + + for (int i = 0; i < NumChannels; i++) { + Channel *chan = &Chan[i]; + int op = chan_ops[i]; + if (i < 3 || (i >= 9 && i < 12)) + chan->SetOperators(&Op[op], &Op[op + 3], &Op[op + 6], &Op[op + 9]); + else + chan->SetOperators(&Op[op], &Op[op + 3], 0, 0); + } + + // Initialise the operator rate data. We can't do this in the Operator constructor as it + // relies on referencing the master and channel objects + for (int i = 0; i < NumOperators; i++) + Op[i].ComputeRates(); + + SetSampleRate(sample_rate); +} + + + +//================================================================================================== +// Change the sample rate. +//================================================================================================== +void Opal::SetSampleRate(int sample_rate) { + + // Sanity + if (sample_rate == 0) + sample_rate = OPL3SampleRate; + + SampleRate = sample_rate; + SampleAccum = 0; + LastOutput[0] = LastOutput[1] = 0; + CurrOutput[0] = CurrOutput[1] = 0; +} + + + +//================================================================================================== +// Write a value to an OPL3 register. +//================================================================================================== +void Opal::Port(uint16_t reg_num, uint8_t val) { + + static constexpr int8_t op_lookup[] = { + // 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F + 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, -1, -1, + // 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F + 12, 13, 14, 15, 16, 17, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + }; + + uint16_t type = reg_num & 0xE0; + + // Is it BD, the one-off register stuck in the middle of the register array? + if (reg_num == 0xBD) { + TremoloDepth = (val & 0x80) != 0; + VibratoDepth = (val & 0x40) != 0; + return; + } + + // Global registers + if (type == 0x00) { + + // 4-OP enables + if (reg_num == 0x104) { + + // Enable/disable channels based on which 4-op enables + uint8_t mask = 1; + for (int i = 0; i < 6; i++, mask <<= 1) { + + // The 4-op channels are 0, 1, 2, 9, 10, 11 + uint16_t chan = static_cast<uint16_t>(i < 3 ? i : i + 6); + Channel *primary = &Chan[chan]; + Channel *secondary = &Chan[chan + 3]; + + if (val & mask) { + + // Let primary channel know it's controlling the secondary channel + primary->SetChannelPair(secondary); + + // Turn off the second channel in the pair + secondary->SetEnable(false); + + } else { + + // Let primary channel know it's no longer controlling the secondary channel + primary->SetChannelPair(0); + + // Turn on the second channel in the pair + secondary->SetEnable(true); + } + } + + // CSW / Note-sel + } else if (reg_num == 0x08) { + + NoteSel = (val & 0x40) != 0; + + // Get the channels to recompute the Key Scale No. as this varies based on NoteSel + for (int i = 0; i < NumChannels; i++) + Chan[i].ComputeKeyScaleNumber(); + } + + // Channel registers + } else if (type >= 0xA0 && type <= 0xC0) { + + // Convert to channel number + int chan_num = reg_num & 15; + + // Valid channel? + if (chan_num >= 9) + return; + + // Is it the other bank of channels? + if (reg_num & 0x100) + chan_num += 9; + + Channel &chan = Chan[chan_num]; + + // Registers Ax and Bx affect both channels + Channel *chans[2] = {&chan, chan.GetChannelPair()}; + int numchans = chans[1] ? 2 : 1; + + // Do specific registers + switch (reg_num & 0xF0) { + + // Frequency low + case 0xA0: { + for (int i = 0; i < numchans; i++) { + chans[i]->SetFrequencyLow(val); + } + break; + } + + // Key-on / Octave / Frequency High + case 0xB0: { + for (int i = 0; i < numchans; i++) { + chans[i]->SetKeyOn((val & 0x20) != 0); + chans[i]->SetOctave(val >> 2 & 7); + chans[i]->SetFrequencyHigh(val & 3); + } + break; + } + + // Right Stereo Channel Enable / Left Stereo Channel Enable / Feedback Factor / Modulation Type + case 0xC0: { + chan.SetRightEnable((val & 0x20) != 0); + chan.SetLeftEnable((val & 0x10) != 0); + chan.SetFeedback(val >> 1 & 7); + chan.SetModulationType(val & 1); + break; + } + } + + // Operator registers + } else if ((type >= 0x20 && type <= 0x80) || type == 0xE0) { + + // Convert to operator number + int op_num = op_lookup[reg_num & 0x1F]; + + // Valid register? + if (op_num < 0) + return; + + // Is it the other bank of operators? + if (reg_num & 0x100) + op_num += 18; + + Operator &op = Op[op_num]; + + // Do specific registers + switch (type) { + + // Tremolo Enable / Vibrato Enable / Sustain Mode / Envelope Scaling / Frequency Multiplier + case 0x20: { + op.SetTremoloEnable((val & 0x80) != 0); + op.SetVibratoEnable((val & 0x40) != 0); + op.SetSustainMode((val & 0x20) != 0); + op.SetEnvelopeScaling((val & 0x10) != 0); + op.SetFrequencyMultiplier(val & 15); + break; + } + + // Key Scale / Output Level + case 0x40: { + op.SetKeyScale(val >> 6); + op.SetOutputLevel(val & 0x3F); + break; + } + + // Attack Rate / Decay Rate + case 0x60: { + op.SetAttackRate(val >> 4); + op.SetDecayRate(val & 15); + break; + } + + // Sustain Level / Release Rate + case 0x80: { + op.SetSustainLevel(val >> 4); + op.SetReleaseRate(val & 15); + break; + } + + // Waveform + case 0xE0: { + op.SetWaveform(val & 7); + break; + } + } + } +} + + + +//================================================================================================== +// Generate sample. Every time you call this you will get two signed 16-bit samples (one for each +// stereo channel) which will sound correct when played back at the sample rate given when the +// class was constructed. +//================================================================================================== +void Opal::Sample(int16_t *left, int16_t *right) { + + // If the destination sample rate is higher than the OPL3 sample rate, we need to skip ahead + while (SampleAccum >= SampleRate) { + + LastOutput[0] = CurrOutput[0]; + LastOutput[1] = CurrOutput[1]; + + Output(CurrOutput[0], CurrOutput[1]); + + SampleAccum -= SampleRate; + } + + // Mix with the partial accumulation + int32_t omblend = SampleRate - SampleAccum; + *left = static_cast<uint16_t>((LastOutput[0] * omblend + CurrOutput[0] * SampleAccum) / SampleRate); + *right = static_cast<uint16_t>((LastOutput[1] * omblend + CurrOutput[1] * SampleAccum) / SampleRate); + + SampleAccum += OPL3SampleRate; +} + + + +//================================================================================================== +// Produce final output from the chip. This is at the OPL3 sample-rate. +//================================================================================================== +void Opal::Output(int16_t &left, int16_t &right) { + + int32_t leftmix = 0, rightmix = 0; + + // Sum the output of each channel + for (int i = 0; i < NumChannels; i++) { + + int16_t chanleft, chanright; + Chan[i].Output(chanleft, chanright); + + leftmix += chanleft; + rightmix += chanright; + } + + // Clamp + if (leftmix < -0x8000) + left = -0x8000; + else if (leftmix > 0x7FFF) + left = 0x7FFF; + else + left = static_cast<uint16_t>(leftmix); + + if (rightmix < -0x8000) + right = -0x8000; + else if (rightmix > 0x7FFF) + right = 0x7FFF; + else + right = static_cast<uint16_t>(rightmix); + + Clock++; + + // Tremolo. According to this post, the OPL3 tremolo is a 13,440 sample length triangle wave + // with a peak at 26 and a trough at 0 and is simply added to the logarithmic level accumulator + // http://forums.submarine.org.uk/phpBB/viewtopic.php?f=9&t=1171 + TremoloClock = (TremoloClock + 1) % 13440; + TremoloLevel = ((TremoloClock < 13440 / 2) ? TremoloClock : 13440 - TremoloClock) / 256; + if (!TremoloDepth) + TremoloLevel >>= 2; + + // Vibrato. This appears to be a 8 sample long triangle wave with a magnitude of the three + // high bits of the channel frequency, positive and negative, divided by two if the vibrato + // depth is zero. It is only cycled every 1,024 samples. + VibratoTick++; + if (VibratoTick >= 1024) { + VibratoTick = 0; + VibratoClock = (VibratoClock + 1) & 7; + } +} + + + +//================================================================================================== +// Channel constructor. +//================================================================================================== +Opal::Channel::Channel() { + + Master = 0; + Freq = 0; + Octave = 0; + PhaseStep = 0; + KeyScaleNumber = 0; + FeedbackShift = 0; + ModulationType = 0; + ChannelPair = 0; + Enable = true; + LeftEnable = true; + RightEnable = true; +} + + + +//================================================================================================== +// Produce output from channel. +//================================================================================================== +void Opal::Channel::Output(int16_t &left, int16_t &right) { + + // Has the channel been disabled? This is usually a result of the 4-op enables being used to + // disable the secondary channel in each 4-op pair + if (!Enable) { + left = right = 0; + return; + } + + int16_t vibrato = (Freq >> 7) & 7; + if (!Master->VibratoDepth) + vibrato >>= 1; + + // 0 3 7 3 0 -3 -7 -3 + uint16_t clk = Master->VibratoClock; + if (!(clk & 3)) + vibrato = 0; // Position 0 and 4 is zero + else { + if (clk & 1) + vibrato >>= 1; // Odd positions are half the magnitude + + vibrato <<= Octave; + + if (clk & 4) + vibrato = -vibrato; // The second half positions are negative + } + + // Combine individual operator outputs + int16_t out, acc; + + // Running in 4-op mode? + if (ChannelPair) { + + // Get the secondary channel's modulation type. This is the only thing from the secondary + // channel that is used + if (ChannelPair->GetModulationType() == 0) { + + if (ModulationType == 0) { + + // feedback -> modulator -> modulator -> modulator -> carrier + out = Op[0]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, FeedbackShift); + out = Op[1]->Output(KeyScaleNumber, PhaseStep, vibrato, out, 0); + out = Op[2]->Output(KeyScaleNumber, PhaseStep, vibrato, out, 0); + out = Op[3]->Output(KeyScaleNumber, PhaseStep, vibrato, out, 0); + + } else { + + // (feedback -> carrier) + (modulator -> modulator -> carrier) + out = Op[0]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, FeedbackShift); + acc = Op[1]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, 0); + acc = Op[2]->Output(KeyScaleNumber, PhaseStep, vibrato, acc, 0); + out += Op[3]->Output(KeyScaleNumber, PhaseStep, vibrato, acc, 0); + } + + } else { + + if (ModulationType == 0) { + + // (feedback -> modulator -> carrier) + (modulator -> carrier) + out = Op[0]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, FeedbackShift); + out = Op[1]->Output(KeyScaleNumber, PhaseStep, vibrato, out, 0); + acc = Op[2]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, 0); + out += Op[3]->Output(KeyScaleNumber, PhaseStep, vibrato, acc, 0); + + } else { + + // (feedback -> carrier) + (modulator -> carrier) + carrier + out = Op[0]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, FeedbackShift); + acc = Op[1]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, 0); + out += Op[2]->Output(KeyScaleNumber, PhaseStep, vibrato, acc, 0); + out += Op[3]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, 0); + } + } + + } else { + + // Standard 2-op mode + if (ModulationType == 0) { + + // Frequency modulation (well, phase modulation technically) + out = Op[0]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, FeedbackShift); + out = Op[1]->Output(KeyScaleNumber, PhaseStep, vibrato, out, 0); + + } else { + + // Additive + out = Op[0]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, FeedbackShift); + out += Op[1]->Output(KeyScaleNumber, PhaseStep, vibrato); + } + } + + left = LeftEnable ? out : 0; + right = RightEnable ? out : 0; +} + + + +//================================================================================================== +// Set phase step for operators using this channel. +//================================================================================================== +void Opal::Channel::SetFrequencyLow(uint16_t freq) { + + Freq = (Freq & 0x300) | (freq & 0xFF); + ComputePhaseStep(); +} +//-------------------------------------------------------------------------------------------------- +void Opal::Channel::SetFrequencyHigh(uint16_t freq) { + + Freq = (Freq & 0xFF) | ((freq & 3) << 8); + ComputePhaseStep(); + + // Only the high bits of Freq affect the Key Scale No. + ComputeKeyScaleNumber(); +} + + + +//================================================================================================== +// Set the octave of the channel (0 to 7). +//================================================================================================== +void Opal::Channel::SetOctave(uint16_t oct) { + + Octave = oct & 7; + ComputePhaseStep(); + ComputeKeyScaleNumber(); +} + + + +//================================================================================================== +// Keys the channel on/off. +//================================================================================================== +void Opal::Channel::SetKeyOn(bool on) { + + Op[0]->SetKeyOn(on); + Op[1]->SetKeyOn(on); +} + + + +//================================================================================================== +// Enable left stereo channel. +//================================================================================================== +void Opal::Channel::SetLeftEnable(bool on) { + + LeftEnable = on; +} + + + +//================================================================================================== +// Enable right stereo channel. +//================================================================================================== +void Opal::Channel::SetRightEnable(bool on) { + + RightEnable = on; +} + + + +//================================================================================================== +// Set the channel feedback amount. +//================================================================================================== +void Opal::Channel::SetFeedback(uint16_t val) { + + FeedbackShift = val ? 9 - val : 0; +} + + + +//================================================================================================== +// Set frequency modulation/additive modulation +//================================================================================================== +void Opal::Channel::SetModulationType(uint16_t type) { + + ModulationType = type; +} + + + +//================================================================================================== +// Compute the stepping factor for the operator waveform phase based on the frequency and octave +// values of the channel. +//================================================================================================== +void Opal::Channel::ComputePhaseStep() { + + PhaseStep = uint32_t(Freq) << Octave; +} + + + +//================================================================================================== +// Compute the key scale number and key scale levels. +// +// From the Yamaha data sheet this is the block/octave number as bits 3-1, with bit 0 coming from +// the MSB of the frequency if NoteSel is 1, and the 2nd MSB if NoteSel is 0. +//================================================================================================== +void Opal::Channel::ComputeKeyScaleNumber() { + + uint16_t lsb = Master->NoteSel ? Freq >> 9 : (Freq >> 8) & 1; + KeyScaleNumber = Octave << 1 | lsb; + + // Get the channel operators to recompute their rates as they're dependent on this number. They + // also need to recompute their key scale level + for (int i = 0; i < 4; i++) { + + if (!Op[i]) + continue; + + Op[i]->ComputeRates(); + Op[i]->ComputeKeyScaleLevel(); + } +} + + + +//================================================================================================== +// Operator constructor. +//================================================================================================== +Opal::Operator::Operator() { + + Master = 0; + Chan = 0; + Phase = 0; + Waveform = 0; + FreqMultTimes2 = 1; + EnvelopeStage = EnvOff; + EnvelopeLevel = 0x1FF; + AttackRate = 0; + DecayRate = 0; + SustainLevel = 0; + ReleaseRate = 0; + KeyScaleShift = 0; + KeyScaleLevel = 0; + Out[0] = Out[1] = 0; + KeyOn = false; + KeyScaleRate = false; + SustainMode = false; + TremoloEnable = false; + VibratoEnable = false; +} + + + +//================================================================================================== +// Produce output from operator. +//================================================================================================== +int16_t Opal::Operator::Output(uint16_t /*keyscalenum*/, uint32_t phase_step, int16_t vibrato, int16_t mod, int16_t fbshift) { + + // Advance wave phase + if (VibratoEnable) + phase_step += vibrato; + Phase += (phase_step * FreqMultTimes2) / 2; + + uint16_t level = (EnvelopeLevel + OutputLevel + KeyScaleLevel + (TremoloEnable ? Master->TremoloLevel : 0)) << 3; + + switch (EnvelopeStage) { + + // Attack stage + case EnvAtt: { + uint16_t add = ((AttackAdd >> AttackTab[Master->Clock >> AttackShift & 7]) * ~EnvelopeLevel) >> 3; + if (AttackRate == 0) + add = 0; + if (AttackMask && (Master->Clock & AttackMask)) + add = 0; + EnvelopeLevel += add; + if (EnvelopeLevel <= 0) { + EnvelopeLevel = 0; + EnvelopeStage = EnvDec; + } + break; + } + + // Decay stage + case EnvDec: { + uint16_t add = DecayAdd >> DecayTab[Master->Clock >> DecayShift & 7]; + if (DecayRate == 0) + add = 0; + if (DecayMask && (Master->Clock & DecayMask)) + add = 0; + EnvelopeLevel += add; + if (EnvelopeLevel >= SustainLevel) { + EnvelopeLevel = SustainLevel; + EnvelopeStage = EnvSus; + } + break; + } + + // Sustain stage + case EnvSus: { + + if (SustainMode) + break; + + // Note: fall-through! + [[fallthrough]]; + } + + // Release stage + case EnvRel: { + uint16_t add = ReleaseAdd >> ReleaseTab[Master->Clock >> ReleaseShift & 7]; + if (ReleaseRate == 0) + add = 0; + if (ReleaseMask && (Master->Clock & ReleaseMask)) + add = 0; + EnvelopeLevel += add; + if (EnvelopeLevel >= 0x1FF) { + EnvelopeLevel = 0x1FF; + EnvelopeStage = EnvOff; + Out[0] = Out[1] = 0; + return 0; + } + break; + } + + // Envelope, and therefore the operator, is not running + default: + Out[0] = Out[1] = 0; + return 0; + } + + // Feedback? In that case we modulate by a blend of the last two samples + if (fbshift) + mod += (Out[0] + Out[1]) >> fbshift; + + uint16_t phase = static_cast<uint16_t>(Phase >> 10) + mod; + uint16_t offset = phase & 0xFF; + uint16_t logsin; + bool negate = false; + + switch (Waveform) { + + //------------------------------------ + // Standard sine wave + //------------------------------------ + case 0: + if (phase & 0x100) + offset ^= 0xFF; + logsin = Master->LogSinTable[offset]; + negate = (phase & 0x200) != 0; + break; + + //------------------------------------ + // Half sine wave + //------------------------------------ + case 1: + if (phase & 0x200) + offset = 0; + else if (phase & 0x100) + offset ^= 0xFF; + logsin = Master->LogSinTable[offset]; + break; + + //------------------------------------ + // Positive sine wave + //------------------------------------ + case 2: + if (phase & 0x100) + offset ^= 0xFF; + logsin = Master->LogSinTable[offset]; + break; + + //------------------------------------ + // Quarter positive sine wave + //------------------------------------ + case 3: + if (phase & 0x100) + offset = 0; + logsin = Master->LogSinTable[offset]; + break; + + //------------------------------------ + // Double-speed sine wave + //------------------------------------ + case 4: + if (phase & 0x200) + offset = 0; + + else { + + if (phase & 0x80) + offset ^= 0xFF; + + offset = (offset + offset) & 0xFF; + negate = (phase & 0x100) != 0; + } + + logsin = Master->LogSinTable[offset]; + break; + + //------------------------------------ + // Double-speed positive sine wave + //------------------------------------ + case 5: + if (phase & 0x200) + offset = 0; + + else { + + offset = (offset + offset) & 0xFF; + if (phase & 0x80) + offset ^= 0xFF; + } + + logsin = Master->LogSinTable[offset]; + break; + + //------------------------------------ + // Square wave + //------------------------------------ + case 6: + logsin = 0; + negate = (phase & 0x200) != 0; + break; + + //------------------------------------ + // Exponentiation wave + //------------------------------------ + default: + logsin = phase & 0x1FF; + if (phase & 0x200) { + logsin ^= 0x1FF; + negate = true; + } + logsin <<= 3; + break; + } + + uint16_t mix = logsin + level; + if (mix > 0x1FFF) + mix = 0x1FFF; + + // From the OPLx decapsulated docs: + // "When such a table is used for calculation of the exponential, the table is read at the + // position given by the 8 LSB's of the input. The value + 1024 (the hidden bit) is then the + // significand of the floating point output and the yet unused MSB's of the input are the + // exponent of the floating point output." + int16_t v = (Master->ExpTable[mix & 0xFF] + 1024u) >> (mix >> 8u); + v += v; + if (negate) + v = ~v; + + // Keep last two results for feedback calculation + Out[1] = Out[0]; + Out[0] = v; + + return v; +} + + + +//================================================================================================== +// Trigger operator. +//================================================================================================== +void Opal::Operator::SetKeyOn(bool on) { + + // Already on/off? + if (KeyOn == on) + return; + KeyOn = on; + + if (on) { + + // The highest attack rate is instant; it bypasses the attack phase + if (AttackRate == 15) { + EnvelopeStage = EnvDec; + EnvelopeLevel = 0; + } else + EnvelopeStage = EnvAtt; + + Phase = 0; + + } else { + + // Stopping current sound? + if (EnvelopeStage != EnvOff && EnvelopeStage != EnvRel) + EnvelopeStage = EnvRel; + } +} + + + +//================================================================================================== +// Enable amplitude vibrato. +//================================================================================================== +void Opal::Operator::SetTremoloEnable(bool on) { + + TremoloEnable = on; +} + + + +//================================================================================================== +// Enable frequency vibrato. +//================================================================================================== +void Opal::Operator::SetVibratoEnable(bool on) { + + VibratoEnable = on; +} + + + +//================================================================================================== +// Sets whether we release or sustain during the sustain phase of the envelope. 'true' is to +// sustain, otherwise release. +//================================================================================================== +void Opal::Operator::SetSustainMode(bool on) { + + SustainMode = on; +} + + + +//================================================================================================== +// Key scale rate. Sets how much the Key Scaling Number affects the envelope rates. +//================================================================================================== +void Opal::Operator::SetEnvelopeScaling(bool on) { + + KeyScaleRate = on; + ComputeRates(); +} + + + +//================================================================================================== +// Multiplies the phase frequency. +//================================================================================================== +void Opal::Operator::SetFrequencyMultiplier(uint16_t scale) { + + // Needs to be multiplied by two (and divided by two later when we use it) because the first + // entry is actually .5 + const uint16_t mul_times_2[] = { + 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 20, 24, 24, 30, 30, + }; + + FreqMultTimes2 = mul_times_2[scale & 15]; +} + + + +//================================================================================================== +// Attenuates output level towards higher pitch. +//================================================================================================== +void Opal::Operator::SetKeyScale(uint16_t scale) { + + static constexpr uint8_t kslShift[4] = { 8, 1, 2, 0 }; + KeyScaleShift = kslShift[scale]; + ComputeKeyScaleLevel(); +} + + + +//================================================================================================== +// Sets the output level (volume) of the operator. +//================================================================================================== +void Opal::Operator::SetOutputLevel(uint16_t level) { + + OutputLevel = level * 4; +} + + + +//================================================================================================== +// Operator attack rate. +//================================================================================================== +void Opal::Operator::SetAttackRate(uint16_t rate) { + + AttackRate = rate; + + ComputeRates(); +} + + + +//================================================================================================== +// Operator decay rate. +//================================================================================================== +void Opal::Operator::SetDecayRate(uint16_t rate) { + + DecayRate = rate; + + ComputeRates(); +} + + + +//================================================================================================== +// Operator sustain level. +//================================================================================================== +void Opal::Operator::SetSustainLevel(uint16_t level) { + + SustainLevel = level < 15 ? level : 31; + SustainLevel *= 16; +} + + + +//================================================================================================== +// Operator release rate. +//================================================================================================== +void Opal::Operator::SetReleaseRate(uint16_t rate) { + + ReleaseRate = rate; + + ComputeRates(); +} + + + +//================================================================================================== +// Assign the waveform this operator will use. +//================================================================================================== +void Opal::Operator::SetWaveform(uint16_t wave) { + + Waveform = wave & 7; +} + + + +//================================================================================================== +// Compute actual rate from register rate. From the Yamaha data sheet: +// +// Actual rate = Rate value * 4 + Rof, if Rate value = 0, actual rate = 0 +// +// Rof is set as follows depending on the KSR setting: +// +// Key scale 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 +// KSR = 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 +// KSR = 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 +// +// Note: zero rates are infinite, and are treated separately elsewhere +//================================================================================================== +void Opal::Operator::ComputeRates() { + + int combined_rate = AttackRate * 4 + (Chan->GetKeyScaleNumber() >> (KeyScaleRate ? 0 : 2)); + int rate_high = combined_rate >> 2; + int rate_low = combined_rate & 3; + + AttackShift = static_cast<uint16_t>(rate_high < 12 ? 12 - rate_high : 0); + AttackMask = (1 << AttackShift) - 1; + AttackAdd = (rate_high < 12) ? 1 : 1 << (rate_high - 12); + AttackTab = Master->RateTables[rate_low]; + + // Attack rate of 15 is always instant + if (AttackRate == 15) + AttackAdd = 0xFFF; + + combined_rate = DecayRate * 4 + (Chan->GetKeyScaleNumber() >> (KeyScaleRate ? 0 : 2)); + rate_high = combined_rate >> 2; + rate_low = combined_rate & 3; + + DecayShift = static_cast<uint16_t>(rate_high < 12 ? 12 - rate_high : 0); + DecayMask = (1 << DecayShift) - 1; + DecayAdd = (rate_high < 12) ? 1 : 1 << (rate_high - 12); + DecayTab = Master->RateTables[rate_low]; + + combined_rate = ReleaseRate * 4 + (Chan->GetKeyScaleNumber() >> (KeyScaleRate ? 0 : 2)); + rate_high = combined_rate >> 2; + rate_low = combined_rate & 3; + + ReleaseShift = static_cast<uint16_t>(rate_high < 12 ? 12 - rate_high : 0); + ReleaseMask = (1 << ReleaseShift) - 1; + ReleaseAdd = (rate_high < 12) ? 1 : 1 << (rate_high - 12); + ReleaseTab = Master->RateTables[rate_low]; +} + + + +//================================================================================================== +// Compute the operator's key scale level. This changes based on the channel frequency/octave and +// operator key scale value. +//================================================================================================== +void Opal::Operator::ComputeKeyScaleLevel() { + + static constexpr uint8_t levtab[] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 12, 16, 20, 24, 28, 32, + 0, 0, 0, 0, 0, 12, 20, 28, 32, 40, 44, 48, 52, 56, 60, 64, + 0, 0, 0, 20, 32, 44, 52, 60, 64, 72, 76, 80, 84, 88, 92, 96, + 0, 0, 32, 52, 64, 76, 84, 92, 96, 104, 108, 112, 116, 120, 124, 128, + 0, 32, 64, 84, 96, 108, 116, 124, 128, 136, 140, 144, 148, 152, 156, 160, + 0, 64, 96, 116, 128, 140, 148, 156, 160, 168, 172, 176, 180, 184, 188, 192, + 0, 96, 128, 148, 160, 172, 180, 188, 192, 200, 204, 208, 212, 216, 220, 224, + }; + + // This uses a combined value of the top four bits of frequency with the octave/block + uint16_t i = (Chan->GetOctave() << 4) | (Chan->GetFreq() >> 6); + KeyScaleLevel = levtab[i] >> KeyScaleShift; +} |