aboutsummaryrefslogtreecommitdiff
path: root/Src/external_dependencies/openmpt-trunk/soundlib/opal.h
blob: 760cda20a93bff526f750f3e2ad526f38899d4d1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
// This is the Opal OPL3 emulator from Reality Adlib Tracker v2.0a (http://www.3eality.com/productions/reality-adlib-tracker).
// It was released by Shayde/Reality into the public domain.
// Minor modifications to silence some warnings and fix a bug in the envelope generator have been applied.
// Additional fixes by JP Cimalando.

/*

    The Opal OPL3 emulator.

    Note: this is not a complete emulator, just enough for Reality Adlib Tracker tunes.

    Missing features compared to a real OPL3:

        - Timers/interrupts
        - OPL3 enable bit (it defaults to always on)
        - CSW mode
        - Test register
        - Percussion mode

*/



#include <cstdint>



//==================================================================================================
// Opal class.
//==================================================================================================
class Opal {

    class Channel;

    // Various constants
    enum {
        OPL3SampleRate      = 49716,
        NumChannels         = 18,
        NumOperators        = 36,

        EnvOff              = -1,
        EnvAtt,
        EnvDec,
        EnvSus,
        EnvRel,
    };

    // A single FM operator
    class Operator {

        public:
                            Operator();
            void            SetMaster(Opal *opal) {  Master = opal;  }
            void            SetChannel(Channel *chan) {  Chan = chan;  }

            int16_t         Output(uint16_t keyscalenum, uint32_t phase_step, int16_t vibrato, int16_t mod = 0, int16_t fbshift = 0);

            void            SetKeyOn(bool on);
            void            SetTremoloEnable(bool on);
            void            SetVibratoEnable(bool on);
            void            SetSustainMode(bool on);
            void            SetEnvelopeScaling(bool on);
            void            SetFrequencyMultiplier(uint16_t scale);
            void            SetKeyScale(uint16_t scale);
            void            SetOutputLevel(uint16_t level);
            void            SetAttackRate(uint16_t rate);
            void            SetDecayRate(uint16_t rate);
            void            SetSustainLevel(uint16_t level);
            void            SetReleaseRate(uint16_t rate);
            void            SetWaveform(uint16_t wave);

            void            ComputeRates();
            void            ComputeKeyScaleLevel();

        protected:
            Opal *          Master;             // Master object
            Channel *       Chan;               // Owning channel
            uint32_t        Phase;              // The current offset in the selected waveform
            uint16_t        Waveform;           // The waveform id this operator is using
            uint16_t        FreqMultTimes2;     // Frequency multiplier * 2
            int             EnvelopeStage;      // Which stage the envelope is at (see Env* enums above)
            int16_t         EnvelopeLevel;      // 0 - $1FF, 0 being the loudest
            uint16_t        OutputLevel;        // 0 - $FF
            uint16_t        AttackRate;
            uint16_t        DecayRate;
            uint16_t        SustainLevel;
            uint16_t        ReleaseRate;
            uint16_t        AttackShift;
            uint16_t        AttackMask;
            uint16_t        AttackAdd;
            const uint16_t *AttackTab;
            uint16_t        DecayShift;
            uint16_t        DecayMask;
            uint16_t        DecayAdd;
            const uint16_t *DecayTab;
            uint16_t        ReleaseShift;
            uint16_t        ReleaseMask;
            uint16_t        ReleaseAdd;
            const uint16_t *ReleaseTab;
            uint16_t        KeyScaleShift;
            uint16_t        KeyScaleLevel;
            int16_t         Out[2];
            bool            KeyOn;
            bool            KeyScaleRate;       // Affects envelope rate scaling
            bool            SustainMode;        // Whether to sustain during the sustain phase, or release instead
            bool            TremoloEnable;
            bool            VibratoEnable;
    };

    // A single channel, which can contain two or more operators
    class Channel {

        public:
                            Channel();
            void            SetMaster(Opal *opal) {  Master = opal;  }
            void            SetOperators(Operator *a, Operator *b, Operator *c, Operator *d) {
                Op[0] = a;
                Op[1] = b;
                Op[2] = c;
                Op[3] = d;
                if (a)
                    a->SetChannel(this);
                if (b)
                    b->SetChannel(this);
                if (c)
                    c->SetChannel(this);
                if (d)
                    d->SetChannel(this);
            }

            void            Output(int16_t &left, int16_t &right);
            void            SetEnable(bool on) {  Enable = on;  }
            void            SetChannelPair(Channel *pair) {  ChannelPair = pair;  }

            void            SetFrequencyLow(uint16_t freq);
            void            SetFrequencyHigh(uint16_t freq);
            void            SetKeyOn(bool on);
            void            SetOctave(uint16_t oct);
            void            SetLeftEnable(bool on);
            void            SetRightEnable(bool on);
            void            SetFeedback(uint16_t val);
            void            SetModulationType(uint16_t type);

            uint16_t        GetFreq() const {  return Freq;  }
            uint16_t        GetOctave() const {  return Octave;  }
            uint16_t        GetKeyScaleNumber() const {  return KeyScaleNumber;  }
            uint16_t        GetModulationType() const {  return ModulationType;  }
            Channel *       GetChannelPair() const { return ChannelPair; }

            void            ComputeKeyScaleNumber();

        protected:
            void            ComputePhaseStep();

            Operator *      Op[4];

            Opal *          Master;             // Master object
            uint16_t        Freq;               // Frequency; actually it's a phase stepping value
            uint16_t        Octave;             // Also known as "block" in Yamaha parlance
            uint32_t        PhaseStep;
            uint16_t        KeyScaleNumber;
            uint16_t        FeedbackShift;
            uint16_t        ModulationType;
            Channel *       ChannelPair;
            bool            Enable;
            bool            LeftEnable, RightEnable;
    };

    public:
                            Opal(int sample_rate);
                            Opal(const Opal &) = delete;
                            Opal(Opal &&) = delete;
                            ~Opal();

        void                SetSampleRate(int sample_rate);
        void                Port(uint16_t reg_num, uint8_t val);
        void                Sample(int16_t *left, int16_t *right);

    protected:
        void                Init(int sample_rate);
        void                Output(int16_t &left, int16_t &right);

        int32_t             SampleRate;
        int32_t             SampleAccum;
        int16_t             LastOutput[2], CurrOutput[2];
        Channel             Chan[NumChannels];
        Operator            Op[NumOperators];
//      uint16_t            ExpTable[256];
//      uint16_t            LogSinTable[256];
        uint16_t            Clock;
        uint16_t            TremoloClock;
        uint16_t            TremoloLevel;
        uint16_t            VibratoTick;
        uint16_t            VibratoClock;
        bool                NoteSel;
        bool                TremoloDepth;
        bool                VibratoDepth;

        static const uint16_t   RateTables[4][8];
        static const uint16_t   ExpTable[256];
        static const uint16_t   LogSinTable[256];
};
//--------------------------------------------------------------------------------------------------
const uint16_t Opal::RateTables[4][8] = {
    {   1, 0, 1, 0, 1, 0, 1, 0  },
    {   1, 0, 1, 0, 0, 0, 1, 0  },
    {   1, 0, 0, 0, 1, 0, 0, 0  },
    {   1, 0, 0, 0, 0, 0, 0, 0  },
};
//--------------------------------------------------------------------------------------------------
const uint16_t Opal::ExpTable[0x100] = {
    1018, 1013, 1007, 1002,  996,  991,  986,  980,  975,  969,  964,  959,  953,  948,  942,  937,
     932,  927,  921,  916,  911,  906,  900,  895,  890,  885,  880,  874,  869,  864,  859,  854,
     849,  844,  839,  834,  829,  824,  819,  814,  809,  804,  799,  794,  789,  784,  779,  774,
     770,  765,  760,  755,  750,  745,  741,  736,  731,  726,  722,  717,  712,  708,  703,  698,
     693,  689,  684,  680,  675,  670,  666,  661,  657,  652,  648,  643,  639,  634,  630,  625,
     621,  616,  612,  607,  603,  599,  594,  590,  585,  581,  577,  572,  568,  564,  560,  555,
     551,  547,  542,  538,  534,  530,  526,  521,  517,  513,  509,  505,  501,  496,  492,  488,
     484,  480,  476,  472,  468,  464,  460,  456,  452,  448,  444,  440,  436,  432,  428,  424,
     420,  416,  412,  409,  405,  401,  397,  393,  389,  385,  382,  378,  374,  370,  367,  363,
     359,  355,  352,  348,  344,  340,  337,  333,  329,  326,  322,  318,  315,  311,  308,  304,
     300,  297,  293,  290,  286,  283,  279,  276,  272,  268,  265,  262,  258,  255,  251,  248,
     244,  241,  237,  234,  231,  227,  224,  220,  217,  214,  210,  207,  204,  200,  197,  194,
     190,  187,  184,  181,  177,  174,  171,  168,  164,  161,  158,  155,  152,  148,  145,  142,
     139,  136,  133,  130,  126,  123,  120,  117,  114,  111,  108,  105,  102,   99,   96,   93,
      90,   87,   84,   81,   78,   75,   72,   69,   66,   63,   60,   57,   54,   51,   48,   45,
      42,   40,   37,   34,   31,   28,   25,   22,   20,   17,   14,   11,    8,    6,    3,    0,
};
//--------------------------------------------------------------------------------------------------
const uint16_t Opal::LogSinTable[0x100] = {
    2137, 1731, 1543, 1419, 1326, 1252, 1190, 1137, 1091, 1050, 1013,  979,  949,  920,  894,  869,
     846,  825,  804,  785,  767,  749,  732,  717,  701,  687,  672,  659,  646,  633,  621,  609,
     598,  587,  576,  566,  556,  546,  536,  527,  518,  509,  501,  492,  484,  476,  468,  461,
     453,  446,  439,  432,  425,  418,  411,  405,  399,  392,  386,  380,  375,  369,  363,  358,
     352,  347,  341,  336,  331,  326,  321,  316,  311,  307,  302,  297,  293,  289,  284,  280,
     276,  271,  267,  263,  259,  255,  251,  248,  244,  240,  236,  233,  229,  226,  222,  219,
     215,  212,  209,  205,  202,  199,  196,  193,  190,  187,  184,  181,  178,  175,  172,  169,
     167,  164,  161,  159,  156,  153,  151,  148,  146,  143,  141,  138,  136,  134,  131,  129,
     127,  125,  122,  120,  118,  116,  114,  112,  110,  108,  106,  104,  102,  100,   98,   96,
      94,   92,   91,   89,   87,   85,   83,   82,   80,   78,   77,   75,   74,   72,   70,   69,
      67,   66,   64,   63,   62,   60,   59,   57,   56,   55,   53,   52,   51,   49,   48,   47,
      46,   45,   43,   42,   41,   40,   39,   38,   37,   36,   35,   34,   33,   32,   31,   30,
      29,   28,   27,   26,   25,   24,   23,   23,   22,   21,   20,   20,   19,   18,   17,   17,
      16,   15,   15,   14,   13,   13,   12,   12,   11,   10,   10,    9,    9,    8,    8,    7,
       7,    7,    6,    6,    5,    5,    5,    4,    4,    4,    3,    3,    3,    2,    2,    2,
       2,    1,    1,    1,    1,    1,    1,    1,    0,    0,    0,    0,    0,    0,    0,    0,
};



//==================================================================================================
// This is the temporary code for generating the above tables.  Maths and data from this nice
// reverse-engineering effort:
//
// https://docs.google.com/document/d/18IGx18NQY_Q1PJVZ-bHywao9bhsDoAqoIn1rIm42nwo/edit
//==================================================================================================
#if 0
#include <math.h>

void GenerateTables() {

    // Build the exponentiation table (reversed from the official OPL3 ROM)
    FILE *fd = fopen("exptab.txt", "wb");
    if (fd) {
        for (int i = 0; i < 0x100; i++) {
            int v = (pow(2, (0xFF - i) / 256.0) - 1) * 1024 + 0.5;
            if (i & 15)
                fprintf(fd, " %4d,", v);
            else
                fprintf(fd, "\n\t%4d,", v);
        }
        fclose(fd);
    }

    // Build the log-sin table
    fd = fopen("sintab.txt", "wb");
    if (fd) {
        for (int i = 0; i < 0x100; i++) {
            int v = -log(sin((i + 0.5) * 3.1415926535897933 / 256 / 2)) / log(2) * 256 + 0.5;
            if (i & 15)
                fprintf(fd, " %4d,", v);
            else
                fprintf(fd, "\n\t%4d,", v);
        }
        fclose(fd);
    }
}
#endif



//==================================================================================================
// Constructor/destructor.
//==================================================================================================
Opal::Opal(int sample_rate) {

    Init(sample_rate);
}
//--------------------------------------------------------------------------------------------------
Opal::~Opal() {
}



//==================================================================================================
// Initialise the emulation.
//==================================================================================================
void Opal::Init(int sample_rate) {

    Clock = 0;
    TremoloClock = 0;
    TremoloLevel = 0;
    VibratoTick = 0;
    VibratoClock = 0;
    NoteSel = false;
    TremoloDepth = false;
    VibratoDepth = false;

//  // Build the exponentiation table (reversed from the official OPL3 ROM)
//  for (int i = 0; i < 0x100; i++)
//      ExpTable[i] = (pow(2, (0xFF - i) / 256.0) - 1) * 1024 + 0.5;
//
//  // Build the log-sin table
//  for (int i = 0; i < 0x100; i++)
//      LogSinTable[i] = -log(sin((i + 0.5) * 3.1415926535897933 / 256 / 2)) / log(2) * 256 + 0.5;

    // Let sub-objects know where to find us
    for (int i = 0; i < NumOperators; i++)
        Op[i].SetMaster(this);

    for (int i = 0; i < NumChannels; i++)
        Chan[i].SetMaster(this);

    // Add the operators to the channels.  Note, some channels can't use all the operators
    // FIXME: put this into a separate routine
    const int chan_ops[] = {
        0, 1, 2, 6, 7, 8, 12, 13, 14, 18, 19, 20, 24, 25, 26, 30, 31, 32,
    };

    for (int i = 0; i < NumChannels; i++) {
        Channel *chan = &Chan[i];
        int op = chan_ops[i];
        if (i < 3 || (i >= 9 && i < 12))
            chan->SetOperators(&Op[op], &Op[op + 3], &Op[op + 6], &Op[op + 9]);
        else
            chan->SetOperators(&Op[op], &Op[op + 3], 0, 0);
    }

    // Initialise the operator rate data.  We can't do this in the Operator constructor as it
    // relies on referencing the master and channel objects
    for (int i = 0; i < NumOperators; i++)
        Op[i].ComputeRates();

    SetSampleRate(sample_rate);
}



//==================================================================================================
// Change the sample rate.
//==================================================================================================
void Opal::SetSampleRate(int sample_rate) {

    // Sanity
    if (sample_rate == 0)
        sample_rate = OPL3SampleRate;

    SampleRate = sample_rate;
    SampleAccum = 0;
    LastOutput[0] = LastOutput[1] = 0;
    CurrOutput[0] = CurrOutput[1] = 0;
}



//==================================================================================================
// Write a value to an OPL3 register.
//==================================================================================================
void Opal::Port(uint16_t reg_num, uint8_t val) {

    static constexpr int8_t op_lookup[] = {
    //  00  01  02  03  04  05  06  07  08  09  0A  0B  0C  0D  0E  0F
        0,  1,  2,  3,  4,  5,  -1, -1, 6,  7,  8,  9,  10, 11, -1, -1,
    //  10  11  12  13  14  15  16  17  18  19  1A  1B  1C  1D  1E  1F
        12, 13, 14, 15, 16, 17, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    };

    uint16_t type = reg_num & 0xE0;

    // Is it BD, the one-off register stuck in the middle of the register array?
    if (reg_num == 0xBD) {
        TremoloDepth = (val & 0x80) != 0;
        VibratoDepth = (val & 0x40) != 0;
        return;
    }

    // Global registers
    if (type == 0x00) {

        // 4-OP enables
        if (reg_num == 0x104) {

            // Enable/disable channels based on which 4-op enables
            uint8_t mask = 1;
            for (int i = 0; i < 6; i++, mask <<= 1) {

                // The 4-op channels are 0, 1, 2, 9, 10, 11
                uint16_t chan = static_cast<uint16_t>(i < 3 ? i : i + 6);
                Channel *primary = &Chan[chan];
                Channel *secondary = &Chan[chan + 3];

                if (val & mask) {

                    // Let primary channel know it's controlling the secondary channel
                    primary->SetChannelPair(secondary);

                    // Turn off the second channel in the pair
                    secondary->SetEnable(false);

                } else {

                    // Let primary channel know it's no longer controlling the secondary channel
                    primary->SetChannelPair(0);

                    // Turn on the second channel in the pair
                    secondary->SetEnable(true);
                }
            }

        // CSW / Note-sel
        } else if (reg_num == 0x08) {

            NoteSel = (val & 0x40) != 0;

            // Get the channels to recompute the Key Scale No. as this varies based on NoteSel
            for (int i = 0; i < NumChannels; i++)
                Chan[i].ComputeKeyScaleNumber();
        }

    // Channel registers
    } else if (type >= 0xA0 && type <= 0xC0) {

        // Convert to channel number
        int chan_num = reg_num & 15;

        // Valid channel?
        if (chan_num >= 9)
            return;

        // Is it the other bank of channels?
        if (reg_num & 0x100)
            chan_num += 9;

        Channel &chan = Chan[chan_num];

        // Registers Ax and Bx affect both channels
        Channel *chans[2] = {&chan, chan.GetChannelPair()};
        int numchans = chans[1] ? 2 : 1;

        // Do specific registers
        switch (reg_num & 0xF0) {

            // Frequency low
            case 0xA0: {
                for (int i = 0; i < numchans; i++) {
                    chans[i]->SetFrequencyLow(val);
                }
                break;
            }

            // Key-on / Octave / Frequency High
            case 0xB0: {
                for (int i = 0; i < numchans; i++) {
                    chans[i]->SetKeyOn((val & 0x20) != 0);
                    chans[i]->SetOctave(val >> 2 & 7);
                    chans[i]->SetFrequencyHigh(val & 3);
                }
                break;
            }

            // Right Stereo Channel Enable / Left Stereo Channel Enable / Feedback Factor / Modulation Type
            case 0xC0: {
                chan.SetRightEnable((val & 0x20) != 0);
                chan.SetLeftEnable((val & 0x10) != 0);
                chan.SetFeedback(val >> 1 & 7);
                chan.SetModulationType(val & 1);
                break;
            }
        }

    // Operator registers
    } else if ((type >= 0x20 && type <= 0x80) || type == 0xE0) {

        // Convert to operator number
        int op_num = op_lookup[reg_num & 0x1F];

        // Valid register?
        if (op_num < 0)
            return;

        // Is it the other bank of operators?
        if (reg_num & 0x100)
            op_num += 18;

        Operator &op = Op[op_num];

        // Do specific registers
        switch (type) {

            // Tremolo Enable / Vibrato Enable / Sustain Mode / Envelope Scaling / Frequency Multiplier
            case 0x20: {
                op.SetTremoloEnable((val & 0x80) != 0);
                op.SetVibratoEnable((val & 0x40) != 0);
                op.SetSustainMode((val & 0x20) != 0);
                op.SetEnvelopeScaling((val & 0x10) != 0);
                op.SetFrequencyMultiplier(val & 15);
                break;
            }

            // Key Scale / Output Level
            case 0x40: {
                op.SetKeyScale(val >> 6);
                op.SetOutputLevel(val & 0x3F);
                break;
            }

            // Attack Rate / Decay Rate
            case 0x60: {
                op.SetAttackRate(val >> 4);
                op.SetDecayRate(val & 15);
                break;
            }

            // Sustain Level / Release Rate
            case 0x80: {
                op.SetSustainLevel(val >> 4);
                op.SetReleaseRate(val & 15);
                break;
            }

            // Waveform
            case 0xE0: {
                op.SetWaveform(val & 7);
                break;
            }
        }
    }
}



//==================================================================================================
// Generate sample.  Every time you call this you will get two signed 16-bit samples (one for each
// stereo channel) which will sound correct when played back at the sample rate given when the
// class was constructed.
//==================================================================================================
void Opal::Sample(int16_t *left, int16_t *right) {

    // If the destination sample rate is higher than the OPL3 sample rate, we need to skip ahead
    while (SampleAccum >= SampleRate) {

        LastOutput[0] = CurrOutput[0];
        LastOutput[1] = CurrOutput[1];

        Output(CurrOutput[0], CurrOutput[1]);

        SampleAccum -= SampleRate;
    }

    // Mix with the partial accumulation
    int32_t omblend = SampleRate - SampleAccum;
    *left = static_cast<uint16_t>((LastOutput[0] * omblend + CurrOutput[0] * SampleAccum) / SampleRate);
    *right = static_cast<uint16_t>((LastOutput[1] * omblend + CurrOutput[1] * SampleAccum) / SampleRate);

    SampleAccum += OPL3SampleRate;
}



//==================================================================================================
// Produce final output from the chip.  This is at the OPL3 sample-rate.
//==================================================================================================
void Opal::Output(int16_t &left, int16_t &right) {

    int32_t leftmix = 0, rightmix = 0;

    // Sum the output of each channel
    for (int i = 0; i < NumChannels; i++) {

        int16_t chanleft, chanright;
        Chan[i].Output(chanleft, chanright);

        leftmix += chanleft;
        rightmix += chanright;
    }

    // Clamp
    if (leftmix < -0x8000)
        left = -0x8000;
    else if (leftmix > 0x7FFF)
        left = 0x7FFF;
    else
        left = static_cast<uint16_t>(leftmix);

    if (rightmix < -0x8000)
        right = -0x8000;
    else if (rightmix > 0x7FFF)
        right = 0x7FFF;
    else
        right = static_cast<uint16_t>(rightmix);

    Clock++;

    // Tremolo.  According to this post, the OPL3 tremolo is a 13,440 sample length triangle wave
    // with a peak at 26 and a trough at 0 and is simply added to the logarithmic level accumulator
    //      http://forums.submarine.org.uk/phpBB/viewtopic.php?f=9&t=1171
    TremoloClock = (TremoloClock + 1) % 13440;
    TremoloLevel = ((TremoloClock < 13440 / 2) ? TremoloClock : 13440 - TremoloClock) / 256;
    if (!TremoloDepth)
        TremoloLevel >>= 2;

    // Vibrato.  This appears to be a 8 sample long triangle wave with a magnitude of the three
    // high bits of the channel frequency, positive and negative, divided by two if the vibrato
    // depth is zero.  It is only cycled every 1,024 samples.
    VibratoTick++;
    if (VibratoTick >= 1024) {
        VibratoTick = 0;
        VibratoClock = (VibratoClock + 1) & 7;
    }
}



//==================================================================================================
// Channel constructor.
//==================================================================================================
Opal::Channel::Channel() {

    Master = 0;
    Freq = 0;
    Octave = 0;
    PhaseStep = 0;
    KeyScaleNumber = 0;
    FeedbackShift = 0;
    ModulationType = 0;
    ChannelPair = 0;
    Enable = true;
    LeftEnable = true;
    RightEnable = true;
}



//==================================================================================================
// Produce output from channel.
//==================================================================================================
void Opal::Channel::Output(int16_t &left, int16_t &right) {

    // Has the channel been disabled?  This is usually a result of the 4-op enables being used to
    // disable the secondary channel in each 4-op pair
    if (!Enable) {
        left = right = 0;
        return;
    }

    int16_t vibrato = (Freq >> 7) & 7;
    if (!Master->VibratoDepth)
        vibrato >>= 1;

    // 0  3  7  3  0  -3  -7  -3
    uint16_t clk = Master->VibratoClock;
    if (!(clk & 3))
        vibrato = 0;                // Position 0 and 4 is zero
    else {
        if (clk & 1)
            vibrato >>= 1;          // Odd positions are half the magnitude

        vibrato <<= Octave;

        if (clk & 4)
            vibrato = -vibrato;     // The second half positions are negative
    }

    // Combine individual operator outputs
    int16_t out, acc;

    // Running in 4-op mode?
    if (ChannelPair) {

        // Get the secondary channel's modulation type.  This is the only thing from the secondary
        // channel that is used
        if (ChannelPair->GetModulationType() == 0) {

            if (ModulationType == 0) {

                // feedback -> modulator -> modulator -> modulator -> carrier
                out  = Op[0]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, FeedbackShift);
                out  = Op[1]->Output(KeyScaleNumber, PhaseStep, vibrato, out, 0);
                out  = Op[2]->Output(KeyScaleNumber, PhaseStep, vibrato, out, 0);
                out  = Op[3]->Output(KeyScaleNumber, PhaseStep, vibrato, out, 0);

            } else {

                // (feedback -> carrier) + (modulator -> modulator -> carrier)
                out  = Op[0]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, FeedbackShift);
                acc  = Op[1]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, 0);
                acc  = Op[2]->Output(KeyScaleNumber, PhaseStep, vibrato, acc, 0);
                out += Op[3]->Output(KeyScaleNumber, PhaseStep, vibrato, acc, 0);
            }

        } else {

            if (ModulationType == 0) {

                // (feedback -> modulator -> carrier) + (modulator -> carrier)
                out  = Op[0]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, FeedbackShift);
                out  = Op[1]->Output(KeyScaleNumber, PhaseStep, vibrato, out, 0);
                acc  = Op[2]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, 0);
                out += Op[3]->Output(KeyScaleNumber, PhaseStep, vibrato, acc, 0);

            } else {

                // (feedback -> carrier) + (modulator -> carrier) + carrier
                out  = Op[0]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, FeedbackShift);
                acc  = Op[1]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, 0);
                out += Op[2]->Output(KeyScaleNumber, PhaseStep, vibrato, acc, 0);
                out += Op[3]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, 0);
            }
        }

    } else {

        // Standard 2-op mode
        if (ModulationType == 0) {

            // Frequency modulation (well, phase modulation technically)
            out = Op[0]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, FeedbackShift);
            out = Op[1]->Output(KeyScaleNumber, PhaseStep, vibrato, out, 0);

        } else {

            // Additive
            out = Op[0]->Output(KeyScaleNumber, PhaseStep, vibrato, 0, FeedbackShift);
            out += Op[1]->Output(KeyScaleNumber, PhaseStep, vibrato);
        }
    }

    left = LeftEnable ? out : 0;
    right = RightEnable ? out : 0;
}



//==================================================================================================
// Set phase step for operators using this channel.
//==================================================================================================
void Opal::Channel::SetFrequencyLow(uint16_t freq) {

    Freq = (Freq & 0x300) | (freq & 0xFF);
    ComputePhaseStep();
}
//--------------------------------------------------------------------------------------------------
void Opal::Channel::SetFrequencyHigh(uint16_t freq) {

    Freq = (Freq & 0xFF) | ((freq & 3) << 8);
    ComputePhaseStep();

    // Only the high bits of Freq affect the Key Scale No.
    ComputeKeyScaleNumber();
}



//==================================================================================================
// Set the octave of the channel (0 to 7).
//==================================================================================================
void Opal::Channel::SetOctave(uint16_t oct) {

    Octave = oct & 7;
    ComputePhaseStep();
    ComputeKeyScaleNumber();
}



//==================================================================================================
// Keys the channel on/off.
//==================================================================================================
void Opal::Channel::SetKeyOn(bool on) {

    Op[0]->SetKeyOn(on);
    Op[1]->SetKeyOn(on);
}



//==================================================================================================
// Enable left stereo channel.
//==================================================================================================
void Opal::Channel::SetLeftEnable(bool on) {

    LeftEnable = on;
}



//==================================================================================================
// Enable right stereo channel.
//==================================================================================================
void Opal::Channel::SetRightEnable(bool on) {

    RightEnable = on;
}



//==================================================================================================
// Set the channel feedback amount.
//==================================================================================================
void Opal::Channel::SetFeedback(uint16_t val) {

    FeedbackShift = val ? 9 - val : 0;
}



//==================================================================================================
// Set frequency modulation/additive modulation
//==================================================================================================
void Opal::Channel::SetModulationType(uint16_t type) {

    ModulationType = type;
}



//==================================================================================================
// Compute the stepping factor for the operator waveform phase based on the frequency and octave
// values of the channel.
//==================================================================================================
void Opal::Channel::ComputePhaseStep() {

    PhaseStep = uint32_t(Freq) << Octave;
}



//==================================================================================================
// Compute the key scale number and key scale levels.
//
// From the Yamaha data sheet this is the block/octave number as bits 3-1, with bit 0 coming from
// the MSB of the frequency if NoteSel is 1, and the 2nd MSB if NoteSel is 0.
//==================================================================================================
void Opal::Channel::ComputeKeyScaleNumber() {

    uint16_t lsb = Master->NoteSel ? Freq >> 9 : (Freq >> 8) & 1;
    KeyScaleNumber = Octave << 1 | lsb;

    // Get the channel operators to recompute their rates as they're dependent on this number.  They
    // also need to recompute their key scale level
    for (int i = 0; i < 4; i++) {

        if (!Op[i])
            continue;

        Op[i]->ComputeRates();
        Op[i]->ComputeKeyScaleLevel();
    }
}



//==================================================================================================
// Operator constructor.
//==================================================================================================
Opal::Operator::Operator() {

    Master = 0;
    Chan = 0;
    Phase = 0;
    Waveform = 0;
    FreqMultTimes2 = 1;
    EnvelopeStage = EnvOff;
    EnvelopeLevel = 0x1FF;
    AttackRate = 0;
    DecayRate = 0;
    SustainLevel = 0;
    ReleaseRate = 0;
    KeyScaleShift = 0;
    KeyScaleLevel = 0;
    Out[0] = Out[1] = 0;
    KeyOn = false;
    KeyScaleRate = false;
    SustainMode = false;
    TremoloEnable = false;
    VibratoEnable = false;
}



//==================================================================================================
// Produce output from operator.
//==================================================================================================
int16_t Opal::Operator::Output(uint16_t /*keyscalenum*/, uint32_t phase_step, int16_t vibrato, int16_t mod, int16_t fbshift) {

    // Advance wave phase
    if (VibratoEnable)
        phase_step += vibrato;
    Phase += (phase_step * FreqMultTimes2) / 2;

    uint16_t level = (EnvelopeLevel + OutputLevel + KeyScaleLevel + (TremoloEnable ? Master->TremoloLevel : 0)) << 3;

    switch (EnvelopeStage) {

        // Attack stage
        case EnvAtt: {
            uint16_t add = ((AttackAdd >> AttackTab[Master->Clock >> AttackShift & 7]) * ~EnvelopeLevel) >> 3;
            if (AttackRate == 0)
                add = 0;
            if (AttackMask && (Master->Clock & AttackMask))
                add = 0;
            EnvelopeLevel += add;
            if (EnvelopeLevel <= 0) {
                EnvelopeLevel = 0;
                EnvelopeStage = EnvDec;
            }
            break;
        }

        // Decay stage
        case EnvDec: {
            uint16_t add = DecayAdd >> DecayTab[Master->Clock >> DecayShift & 7];
            if (DecayRate == 0)
                add = 0;
            if (DecayMask && (Master->Clock & DecayMask))
                add = 0;
            EnvelopeLevel += add;
            if (EnvelopeLevel >= SustainLevel) {
                EnvelopeLevel = SustainLevel;
                EnvelopeStage = EnvSus;
            }
            break;
        }

        // Sustain stage
        case EnvSus: {
    
            if (SustainMode)
                break;

            // Note: fall-through!
            [[fallthrough]];
        }

        // Release stage
        case EnvRel: {
            uint16_t add = ReleaseAdd >> ReleaseTab[Master->Clock >> ReleaseShift & 7];
            if (ReleaseRate == 0)
                add = 0;
            if (ReleaseMask && (Master->Clock & ReleaseMask))
                add = 0;
            EnvelopeLevel += add;
            if (EnvelopeLevel >= 0x1FF) {
                EnvelopeLevel = 0x1FF;
                EnvelopeStage = EnvOff;
                Out[0] = Out[1] = 0;
                return 0;
            }
            break;
        }

        // Envelope, and therefore the operator, is not running
        default:
            Out[0] = Out[1] = 0;
            return 0;
    }

    // Feedback?  In that case we modulate by a blend of the last two samples
    if (fbshift)
        mod += (Out[0] + Out[1]) >> fbshift;

    uint16_t phase = static_cast<uint16_t>(Phase >> 10) + mod;
    uint16_t offset = phase & 0xFF;
    uint16_t logsin;
    bool negate = false;

    switch (Waveform) {

        //------------------------------------
        // Standard sine wave
        //------------------------------------
        case 0:
            if (phase & 0x100)
                offset ^= 0xFF;
            logsin = Master->LogSinTable[offset];
            negate = (phase & 0x200) != 0;
            break;

        //------------------------------------
        // Half sine wave
        //------------------------------------
        case 1:
            if (phase & 0x200)
                offset = 0;
            else if (phase & 0x100)
                offset ^= 0xFF;
            logsin = Master->LogSinTable[offset];
            break;

        //------------------------------------
        // Positive sine wave
        //------------------------------------
        case 2:
            if (phase & 0x100)
                offset ^= 0xFF;
            logsin =  Master->LogSinTable[offset];
            break;

        //------------------------------------
        // Quarter positive sine wave
        //------------------------------------
        case 3:
            if (phase & 0x100)
                offset = 0;
            logsin =  Master->LogSinTable[offset];
            break;

        //------------------------------------
        // Double-speed sine wave
        //------------------------------------
        case 4:
            if (phase & 0x200)
                offset = 0;

            else {

                if (phase & 0x80)
                    offset ^= 0xFF;

                offset = (offset + offset) & 0xFF;
                negate = (phase & 0x100) != 0;
            }

            logsin =  Master->LogSinTable[offset];
            break;

        //------------------------------------
        // Double-speed positive sine wave
        //------------------------------------
        case 5:
            if (phase & 0x200)
                offset = 0;

            else {

                offset = (offset + offset) & 0xFF;
                if (phase & 0x80)
                    offset ^= 0xFF;
            }

            logsin =  Master->LogSinTable[offset];
            break;

        //------------------------------------
        // Square wave
        //------------------------------------
        case 6:
            logsin = 0;
            negate = (phase & 0x200) != 0;
            break;

        //------------------------------------
        // Exponentiation wave
        //------------------------------------
        default:
            logsin = phase & 0x1FF;
            if (phase & 0x200) {
                logsin ^= 0x1FF;
                negate = true;
            }
            logsin <<= 3;
            break;
    }

    uint16_t mix = logsin + level;
    if (mix > 0x1FFF)
        mix = 0x1FFF;

    // From the OPLx decapsulated docs:
    // "When such a table is used for calculation of the exponential, the table is read at the
    // position given by the 8 LSB's of the input. The value + 1024 (the hidden bit) is then the
    // significand of the floating point output and the yet unused MSB's of the input are the
    // exponent of the floating point output."
    int16_t v = (Master->ExpTable[mix & 0xFF] + 1024u) >> (mix >> 8u);
    v += v;
    if (negate)
        v = ~v;

    // Keep last two results for feedback calculation
    Out[1] = Out[0];
    Out[0] = v;

    return v;
}



//==================================================================================================
// Trigger operator.
//==================================================================================================
void Opal::Operator::SetKeyOn(bool on) {

    // Already on/off?
    if (KeyOn == on)
        return;
    KeyOn = on;

    if (on) {

        // The highest attack rate is instant; it bypasses the attack phase
        if (AttackRate == 15) {
            EnvelopeStage = EnvDec;
            EnvelopeLevel = 0;
        } else
            EnvelopeStage = EnvAtt;

        Phase = 0;

    } else {

        // Stopping current sound?
        if (EnvelopeStage != EnvOff && EnvelopeStage != EnvRel)
            EnvelopeStage = EnvRel;
    }
}



//==================================================================================================
// Enable amplitude vibrato.
//==================================================================================================
void Opal::Operator::SetTremoloEnable(bool on) {

    TremoloEnable = on;
}



//==================================================================================================
// Enable frequency vibrato.
//==================================================================================================
void Opal::Operator::SetVibratoEnable(bool on) {

    VibratoEnable = on;
}



//==================================================================================================
// Sets whether we release or sustain during the sustain phase of the envelope.  'true' is to
// sustain, otherwise release.
//==================================================================================================
void Opal::Operator::SetSustainMode(bool on) {

    SustainMode = on;
}



//==================================================================================================
// Key scale rate.  Sets how much the Key Scaling Number affects the envelope rates.
//==================================================================================================
void Opal::Operator::SetEnvelopeScaling(bool on) {

    KeyScaleRate = on;
    ComputeRates();
}



//==================================================================================================
// Multiplies the phase frequency.
//==================================================================================================
void Opal::Operator::SetFrequencyMultiplier(uint16_t scale) {

    // Needs to be multiplied by two (and divided by two later when we use it) because the first
    // entry is actually .5
    const uint16_t mul_times_2[] = {
        1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 20, 24, 24, 30, 30,
    };

    FreqMultTimes2 = mul_times_2[scale & 15];
}



//==================================================================================================
// Attenuates output level towards higher pitch.
//==================================================================================================
void Opal::Operator::SetKeyScale(uint16_t scale) {

    static constexpr uint8_t kslShift[4] = { 8, 1, 2, 0 };
    KeyScaleShift = kslShift[scale];
    ComputeKeyScaleLevel();
}



//==================================================================================================
// Sets the output level (volume) of the operator.
//==================================================================================================
void Opal::Operator::SetOutputLevel(uint16_t level) {

    OutputLevel = level * 4;
}



//==================================================================================================
// Operator attack rate.
//==================================================================================================
void Opal::Operator::SetAttackRate(uint16_t rate) {

    AttackRate = rate;

    ComputeRates();
}



//==================================================================================================
// Operator decay rate.
//==================================================================================================
void Opal::Operator::SetDecayRate(uint16_t rate) {

    DecayRate = rate;

    ComputeRates();
}



//==================================================================================================
// Operator sustain level.
//==================================================================================================
void Opal::Operator::SetSustainLevel(uint16_t level) {

    SustainLevel = level < 15 ? level : 31;
    SustainLevel *= 16;
}



//==================================================================================================
// Operator release rate.
//==================================================================================================
void Opal::Operator::SetReleaseRate(uint16_t rate) {

    ReleaseRate = rate;

    ComputeRates();
}



//==================================================================================================
// Assign the waveform this operator will use.
//==================================================================================================
void Opal::Operator::SetWaveform(uint16_t wave) {

    Waveform = wave & 7;
}



//==================================================================================================
// Compute actual rate from register rate.  From the Yamaha data sheet:
//
// Actual rate = Rate value * 4 + Rof, if Rate value = 0, actual rate = 0
//
// Rof is set as follows depending on the KSR setting:
//
//  Key scale   0   1   2   3   4   5   6   7   8   9   10  11  12  13  14  15
//  KSR = 0     0   0   0   0   1   1   1   1   2   2   2   2   3   3   3   3
//  KSR = 1     0   1   2   3   4   5   6   7   8   9   10  11  12  13  14  15
//
// Note: zero rates are infinite, and are treated separately elsewhere
//==================================================================================================
void Opal::Operator::ComputeRates() {

    int combined_rate = AttackRate * 4 + (Chan->GetKeyScaleNumber() >> (KeyScaleRate ? 0 : 2));
    int rate_high = combined_rate >> 2;
    int rate_low = combined_rate & 3;

    AttackShift = static_cast<uint16_t>(rate_high < 12 ? 12 - rate_high : 0);
    AttackMask = (1 << AttackShift) - 1;
    AttackAdd = (rate_high < 12) ? 1 : 1 << (rate_high - 12);
    AttackTab = Master->RateTables[rate_low];

    // Attack rate of 15 is always instant
    if (AttackRate == 15)
        AttackAdd = 0xFFF;

    combined_rate = DecayRate * 4 + (Chan->GetKeyScaleNumber() >> (KeyScaleRate ? 0 : 2));
    rate_high = combined_rate >> 2;
    rate_low = combined_rate & 3;

    DecayShift = static_cast<uint16_t>(rate_high < 12 ? 12 - rate_high : 0);
    DecayMask = (1 << DecayShift) - 1;
    DecayAdd = (rate_high < 12) ? 1 : 1 << (rate_high - 12);
    DecayTab = Master->RateTables[rate_low];

    combined_rate = ReleaseRate * 4 + (Chan->GetKeyScaleNumber() >> (KeyScaleRate ? 0 : 2));
    rate_high = combined_rate >> 2;
    rate_low = combined_rate & 3;

    ReleaseShift = static_cast<uint16_t>(rate_high < 12 ? 12 - rate_high : 0);
    ReleaseMask = (1 << ReleaseShift) - 1;
    ReleaseAdd = (rate_high < 12) ? 1 : 1 << (rate_high - 12);
    ReleaseTab = Master->RateTables[rate_low];
}



//==================================================================================================
// Compute the operator's key scale level.  This changes based on the channel frequency/octave and
// operator key scale value.
//==================================================================================================
void Opal::Operator::ComputeKeyScaleLevel() {

    static constexpr uint8_t levtab[] = {
        0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0,
        0,      0,      0,      0,      0,      0,      0,      0,      0,      8,      12,     16,     20,     24,     28,     32,
        0,      0,      0,      0,      0,      12,     20,     28,     32,     40,     44,     48,     52,     56,     60,     64,
        0,      0,      0,      20,     32,     44,     52,     60,     64,     72,     76,     80,     84,     88,     92,     96,
        0,      0,      32,     52,     64,     76,     84,     92,     96,     104,    108,    112,    116,    120,    124,    128,
        0,      32,     64,     84,     96,     108,    116,    124,    128,    136,    140,    144,    148,    152,    156,    160,
        0,      64,     96,     116,    128,    140,    148,    156,    160,    168,    172,    176,    180,    184,    188,    192,
        0,      96,     128,    148,    160,    172,    180,    188,    192,    200,    204,    208,    212,    216,    220,    224,
    };

    // This uses a combined value of the top four bits of frequency with the octave/block
    uint16_t i = (Chan->GetOctave() << 4) | (Chan->GetFreq() >> 6);
    KeyScaleLevel = levtab[i] >> KeyScaleShift;
}